
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

How the Great Firewall of China Detects
and Blocks Fully Encrypted Traffic

Mingshi Wu, GFW Report; Jackson Sippe, University of Colorado Boulder;
Danesh Sivakumar and Jack Burg, University of Maryland; Peter Anderson,

Independent researcher; Xiaokang Wang, V2Ray Project; Kevin Bock,
University of Maryland; Amir Houmansadr, University of Massachusetts Amherst;
Dave Levin, University of Maryland; Eric Wustrow, University of Colorado Boulder

https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi

How the Great Firewall of China Detects and Blocks Fully Encrypted Traffic

Mingshi Wu
GFW Report

Jackson Sippe
University of Colorado Boulder

Danesh Sivakumar
University of Maryland

Jack Burg
University of Maryland

Peter Anderson
Independent researcher

Xiaokang Wang
V2Ray Project

Kevin Bock
University of Maryland

Amir Houmansadr
University of Massachusetts Amherst

Dave Levin
University of Maryland

Eric Wustrow
University of Colorado Boulder

Abstract
One of the cornerstones in censorship circumvention is fully
encrypted protocols, which encrypt every byte of the payload
in an attempt to “look like nothing”. In early November 2021,
the Great Firewall of China (GFW) deployed a new censorship
technique that passively detects—and subsequently blocks—
fully encrypted traffic in real time. The GFW’s new censorship
capability affects a large set of popular censorship circum-
vention protocols, including but not limited to Shadowsocks,
VMess, and Obfs4. Although China had long actively probed
such protocols, this was the first report of purely passive de-
tection, leading the anti-censorship community to ask how
detection was possible.

In this paper, we measure and characterize the GFW’s new
system for censoring fully encrypted traffic. We find that, in-
stead of directly defining what fully encrypted traffic is, the
censor applies crude but efficient heuristics to exempt traffic
that is unlikely to be fully encrypted traffic; it then blocks the
remaining non-exempted traffic. These heuristics are based
on the fingerprints of common protocols, the fraction of set
bits, and the number, fraction, and position of printable ASCII
characters. Our Internet scans reveal what traffic and which IP
addresses the GFW inspects. We simulate the inferred GFW’s
detection algorithm on live traffic at a university network tap
to evaluate its comprehensiveness and false positives. We
show evidence that the rules we inferred have good coverage
of what the GFW actually uses. We estimate that, if applied
broadly, it could potentially block about 0.6% of normal In-
ternet traffic as collateral damage.

Our understanding of the GFW’s new censorship mecha-
nism helps us derive several practical circumvention strategies.
We responsibly disclosed our findings and suggestions to the
developers of different anti-censorship tools, helping millions
of users successfully evade this new form of blocking.

1 Introduction

Fully encrypted circumvention protocols are a cornerstone of
censorship circumvention solutions. Whereas protocols like

TLS begin with a handshake that comprises plaintext bytes,
fully encrypted (randomized) protocols—such as VMess [23],
Shadowsocks [22], and Obfs4 [7]—are designed such that
every byte in the connection is functionally indistinguishable
from random. The idea behind these “looks like nothing” pro-
tocols is that they should be difficult for censors to fingerprint
and therefore costly to block.

On November 6, 2021, Internet users in China reported
blockings of their Shadowsocks and VMess servers [10]. On
November 8, an Outline [42] developer reported a sudden
drop in use from China [69]. The start of this blocking co-
incided with the sixth plenary session of the 19th Chinese
communist party central committee [1, 4], which was held on
November 8–11, 2021. Blocking these circumvention tools
represents a new capability in China’s Great Firewall (GFW).
To our knowledge, although China has been using passive traf-
fic analysis and active probing together to identify Shadow-
socks servers since May 2019 [5], it is the first time the censor
has been able to block fully encrypted proxies en masse in
real time, completely based on passive traffic analysis. The
importance of fully encrypted protocols to the entire anti-
censorship ecosystem and the mysterious behaviors of the
GFW motivate us to explore and understand the underlying
mechanisms of detection and blocking.

In this work, we measure and characterize the GFW’s new
system for passively detecting and censoring fully encrypted
traffic. We find that, instead of directly defining what fully
encrypted traffic is, the censor applies at least five sets of
crude but efficient heuristics to exempt traffic that is unlikely
to be fully encrypted traffic; it then blocks the remaining non-
exempted traffic. These exemption rules are based on common
protocol fingerprints, a crude entropy test using the fraction of
set bits, and the fraction, position, and maximum contiguous
count of ASCII characters in the first TCP payload.

Due to the black-box nature of the GFW, our inferred rules
may not be exhaustive; however, we evaluate our inferred
rules on real-world traffic from a network tap at CU Boulder,
and provide evidence that our rules have significant overlap
with the GFW’s. We also find that the inferred detection al-

USENIX Association 32nd USENIX Security Symposium 2653

gorithm would block roughly 0.6% of all connections on our
network tap. Possibly to mitigate over-blocking caused by
false positives, our Internet scans show that the GFW strategi-
cally only monitors 26% of connections and only to specific
IP ranges of popular data centers.

We also analyze the relationship between this new form of
passive censorship and the GFW’s well-known active probing
system [5], which operate in parallel. We find that the active
probing system also relies on this traffic analysis algorithm
but has additional packet length-based rules applied. Con-
sequently, the circumvention strategies that can evade this
new blocking will also prevent the GFW from identifying and
subsequently active-probing the proxy servers.

We derive various circumvention strategies from our un-
derstanding of this new censorship system. We responsibly
and promptly shared our findings and circumvention sugges-
tions with the developers of various popular anti-censorship
tools, including Shadowsocks [22], V2Ray [59], Outline [42],
Lantern [20], Psiphon [21], and Conjure [33]. These circum-
vention strategies have been widely adopted and deployed
since January 2022, helping millions of users bypass this new
censorship. As of February 2023, all circumvention strategies
these tools adopted are reportedly still effective in China.

2 Background

2.1 Traffic Obfuscation Strategies
Tschantz et al. divide approaches to obfuscating censorship
circumvention traffic into two types: steganograpic and poly-
morphic [57, § V]. The goal of steganographic proxies is to
make circumvention traffic look like allowed traffic; the goal
of polymorphism is to make circumvention traffic not look
like forbidden traffic.

The two most common approaches to achieving steganog-
raphy are mimicking and tunneling. Houmansadr et al. [39]
conclude that mimicking a protocol is fundamentally flawed
and suggest that tunneling through allowed protocols be a
more censorship-resistant approach. Frolov and Wustrow [35]
demonstrate that even when a tunneling approach is used, it
still requires effort to perfectly align protocol fingerprints with
popular implementations, in order to avoid blocking by pro-
tocol fingerprints. For instance, in 2012, China and Ethiopia
deployed deep packet inspection to detect Tor traffic by its
uncommon ciphersuits [44, 55, 67]. Censorship middlebox
vendors have previously identified and blocked meek [29]
traffic based on its TLS fingerprint and SNI value [28].

To avoid this complexity, many popular proxies opt for
polymorphic designs. A common way to achieve polymor-
phism is to fully encrypt the traffic payload, starting from the
first packet in a connection. Without any plaintext or fixed
header structure to fingerprint, the censor cannot easily iden-
tify proxy traffic with regular expressions or by looking for
specific patterns in traffic. This design was first introduced in

Obfuscated OpenSSH in 2009 [16]. Since then, it has been
employed by Obfsproxy [24], Shadowsocks [22], Outline [42],
VMess [23], ScrambleSuit [68], Obfs4 [7], and partially used
in Geph4 [58], Lantern [20], Psiphon3 [21], and Conjure [33].

Fully encrypted traffic is often referred to as “looks like
nothing” traffic, or misunderstood as “having no characteris-
tics”; however, a more accurate description would be “looks
like random”. In fact, such traffic does have an important char-
acteristic that sets it apart from other traffic: Fully encrypted
traffic is indistinguishable from random. Since there are no
identifiable headers, traffic will have high entropy homoge-
neously throughout the entire connection, even in the first
data packet. By contrast, even encrypted protocols like TLS
have relatively low-entropy handshake headers that convey
supported versions and extensions.

In 2015, Wang et al. [61, §5.1] used the length and high
Shannon entropy of the first packet payload in a connection
to identify randomized traffic, like Obfs4. Similarly, in 2017,
Zhixin Wang released a proof-of-concept tool that used the
high Shannon entropy of the first three packets’ payloads in a
connection to identify Shadowsocks traffic [40]. Madeye ex-
tended the tool to additionally use the payload length distribu-
tion to detect ShadowsocksR traffic [47]. He et al. [70, §IV.A]
and Liang et al. [46, §II.A] used a single-bit frequency detec-
tion algorithm, rather than the Shannon entropy, to measure
the randomness of Obfs4 traffic. In 2019, Alice et al. found
that the GFW was using the length and entropy of the first data
packet in each connection to suspect Shadowsocks traffic [5].

2.2 Active Probing Attacks and Defenses

In active probing attacks, the censor sends well-crafted pay-
loads to a suspected server and measures how it responds.
If the server responds to these probes in an identifiable way
(e.g. lets the censor use it as a proxy), the censor can block
it. As early as August 2011, the GFW was observed to send
seemingly random payloads to foreign SSH servers that ac-
cepted SSH logins from China [49]. In 2012, the GFW first
looked for a unique TLS ciphersuit to identify Tor traffic; it
then sent active probes to the suspected servers to confirm its
guess [64, 66, 67]. In 2015, Ensafi et al. conducted a detailed
analysis of the GFW’s active probing attacks against various
protocols [27]. Since May 2019, China has deployed a censor-
ship system to detect and block Shadowsocks servers in two
steps: It first uses the length and entropy of the first packet pay-
load in each connection to passively identify possible Shadow-
socks traffic, and then sends various probes, in different stages,
to the suspected servers to confirm its guess [5]. In response,
researchers proposed various defenses against active probing
attacks, including consistent server reactions [9, 34] and ap-
plication fronting [36,45]. Shadowsocks, Outline, and V2Ray
have incorporated probe-resistant designs [5,19,32,34,43,71],
making them unblocked in China since September 2020 [5],
until the recent blocking in November 2021 [10].

2654 32nd USENIX Security Symposium USENIX Association

Experiments Time Span China Vantage Points US Vantage Points Sections
Characterization Nov. 6, 2021 – May 18, 2022 (6 months) 3 (TC, BJ),1 (Ali, BJ) 3 (DO, SFO) §4
Re-running Feb. 16, 2023 (1 day) 1 (TC, BJ) 1 (DO, SFO) §4.1,§4.2,§4.3
Active Probing May 19 – Jun. 8, 2022 (3 weeks) 1 (TC, BJ) 2 (DO, SFO) §5
Internet Scan May 12–13, 2022 (2 days) 9 (TC, BJ) 1 (Scan, Univ) §6
Live Traffic Jul. – Sept., 2022 (3 months) 1 (TC, BJ) 1 (DO, SFO), 1 (Tap, Univ) §7

Table 1: Experiment timeline and vantage points — In total, we used one VPS in AlibabaCloud (Ali) Beijing (AS37963),
ten VPSes in TencentCloud (TC) Beijing (AS45090), four VPSes in DigitalOcean (DO) San Francisco (AS14061), and two
machines at the University of Colorado Boulder (Univ) (AS104).

3 Methodology

We crafted and sent various test probes between hosts inside
and outside of China, letting them be observed the GFW. We
observed the GFW’s reactions by capturing and comparing
traffic on both endpoints. This logging allows us to identify
any dropped or manipulated packets, as well as active probes.

Experiment timeline and Vantage points. We summarized
the timeline and vantage point usage of all major experiments
in Table 1. In total, we used ten VPSes in TencentCloud
Beijing (AS45090) and one VPS in AlibabaCloud Beijing
(AS37963). We did not observe any differences in the cen-
soring behavior between our vantage points within China or
any affected external vantage points. We used four VPSes in
DigitalOcean San Francisco (AS14061): three of them were
affected by the new censorship, the other one was not. We
turned these four VPSes into sink servers; that is, the servers
listen on all ports from 1 to 65535 to accept TCP connections,
but do not send any data back to the client. We also employed
two machines in the CU Boulder (AS104) for Internet scan-
ning and live traffic analysis. We checked the IP addresses of
our VPSes against IP2Location database [3], confirming their
geo-locations are as reported by their providers.

Triggering censorship. Because fully encrypted traffic is
indistinguishable from random data, beyond using actual cir-
cumvention tools, we developed measurement tools that send
random data to trigger blocking in our study. The tools initiate
a TCP handshake, send a random payload of a given length,
and then close the connection.

Using residual censorship to confirm blockings. Similar
to how the GFW blocks many other protocols [13, 14, 17, 63],
after a connection triggers the censorship, the GFW blocks
all subsequent connections having the same 3-tuple (client
IP, server IP, server port) for 180 seconds. This residual cen-
sorship allows us to confirm blocking by sending follow-up
connections from the same client to the same port of the server.
We make five TCP connections one by one with a one-second
interval in between. If all five connections failed, we conclude
that the 3-tuple is blocked. Once a 3-tuple is blocked, we do
not use it for further tests in the next 180 seconds.

Accouting for probabilistic blocking with repeated tests.
We often had to make multiple connections with the same pay-

load before we observed blocking. In Section 6.3, we explain
that this is because the GFW employs a probabilistic blocking
strategy, where censorship is only triggered approximately a
quarter of the time. To account for this probabilistic behavior,
we send the same payload in up to 25 connections before
drawing any blocking (or not blocking) conclusion. If we can
successfully make 25 connections with the same payload in
a row, then we conclude that the payload (or server) is not
affected by this censorship. If after sending the payload at
least once, a sequence of 5 subsequent connection attempts
timeout (due to residual censorship), we label the payload
(and server) as affected by censorship. We use this method of
repeated connections to measure blocked payloads in all the
tests throughout our study.

4 Characterizing the New Censorship System

We conduct experiments to understand how the GFW detects
and blocks fully encrypted connections. Detailed in Table 1,
between Nov 6, 2021 and May 18, 2022, we used three VPSes
in China and three sink servers in the US to conduct our ex-
periments. During the same period, we also used one VPS
in AlibabaCloud Beijing (AS37963) to repeat all our experi-
ments. We did not observe any differences in the censoring
behavior among our vantage points within China or any af-
fected external vantage point. On February 16, 2023, we reran
our experiments and confirmed all detection rules still held.
This time, we used one VPS in TencentCloud BJ and one sink
server in DigitalOcean SFO.

Algorithm 1 presents a high-level overview of the GFW’s
detection rules we inferred, and Figure 1 illustrates examples
of these inferred rules in action. While we cannot infer the
order in which these rules get applied or if they are exhaustive,
our experiments confirm specific components of the GFW’s
censorship strategy. We find that, instead of directly defining
what fully encrypted traffic is, the censor applies at least five
sets crude but efficient heuristic rules to exempt traffic that
is unlikely to be fully encrypted traffic; it then blocks the
remaining non-exempted traffic. These exemption rules are
based on common protocol fingerprints, a crude entropy test
using the fraction of bits set, and the fraction, position, and
maximum contiguous count of ASCII characters.

USENIX Association 32nd USENIX Security Symposium 2655

Algorithm 1 The GFW uses at least five heuristic rules to
detect and block fully encrypted traffic. The censor applies
this algorithm to TCP connections sent from China to certain
IP subnets and employs probabilistic blocking (Section 6).
Allow a connection to continue if the first TCP payload (pkt)
sent by the client satisfies any of the following exemptions:

Ex1: popcount(pkt)
len(pkt) ≤ 3.4 or popcount(pkt)

len(pkt) ≥ 4.6.

Ex2: The first six (or more) bytes of pkt are [0x20,0x7e].

Ex3: More than 50% of pkt’s bytes are [0x20,0x7e].

Ex4: More than 20 contiguous bytes of pkt are [0x20,0x7e].

Ex5: It matches the protocol fingerprint for TLS or HTTP.

Block if none of the above hold.

4.1 Entropy Exemption (Ex1)

We observed that the fraction of bits set influences whether
a connection is blocked. To determine this, we sent repeated
connections to our server and observed which were blocked.
In each connection, we sent one of 256 different byte patterns,
consisting of 1 byte repeated 100 times (e.g., \x00\x00\x00
. . . , \x01\x01\x01 . . . , . . . , \ xff \ xff \ xff . . .). We sent each
pattern in 25 connections to our server, and observed if any
patterns resulted in blocking subsequent connections, indicat-
ing the payload triggers blocking. We found 40 byte patterns
triggered blocking, while the remaining 216 patterns did not.
Example patterns that were blocked include \x0f\x0f\x0f . . . ,
\x17\x17\x17 . . . , and \x1b\x1b\x1b . . . (and 37 others).

All of the blocked patterns consist of bytes with exactly
4 (out of 8) bits that were 1 (for instance, \x1b in binary
is 00011011). We hypothesized that the number of set bits
(1 bits) per byte may play a role, as uniformly random data
will have close to the same number of total 1s and 0s in binary.
In effect, this is essentially measuring the entropy of the bits
within the client’s packet.

We confirmed this by sending combinations of bytes that
were individually allowed, but together resulted in being
blocked. For example, both \xfe \xfe \xfe . . . and \x01\x01
\x01 . . . were not blocked individually, but these bytes sent
together as \xfe \x01\xfe \x01 . . . resulted in blocking. We
note \xfe \x01 has 8 (out of 16) bits set to 1 (an average of
4 bits per byte set), while \xfe has 7 out of 8, and \x01 has
1 of 8 set, explaining why individually they are allowed, but
together they are blocked.

Of course, random or encrypted data will not always have
exactly half of the bits set to 1. We tested how close to half
the GFW needed in order to block, by sending a sequence
of 50 random bytes (400 bits) with an increasing number of
bits set. We produced 401 bitstrings with 0–400 bits set to 1,
and shuffled each string, yielding a set of random strings with

0–8 bits set per byte (in increments of 0.02 bits/byte). For
each string, we made 25 connections and sent the string to
observe if it triggered subsequent connections to be blocked.
We found that all strings with ≤ 3.4 or ≥ 4.6 bits/byte set
were not blocked, while strings with between 3.4 and 4.6
bits/byte set were blocked.

There was a single exception to this for a string with 4.26
bits/byte set, which we determined was not blocked due to hav-
ing over 50% of its bytes be printable ASCII characters; we
show next this is an exemption rule (Ex2). We repeated our ex-
periment and confirmed that other strings with the same num-
ber of bits set with less printable ASCII are indeed blocked.

In summary, we find that the GFW exempts a connection if
the fraction of bits set in the client’s first data packet deviates
from half. This corresponds to a crude measure of entropy:
random (encrypted) data will have close to half of the bits set
to 1, while other protocols usually have fewer 1 bits per byte
due to plaintext or zero-padded protocol headers. For instance,
Google Chrome version 105 sends a TLS client hello with
an average of only 1.56 bits set per byte, falling outside the
censorship range, owing to padding with zeros.

4.2 ASCII Characters Exemption (Ex2-4)
We observed several exceptions to the bit counting rule we
discovered in Section 4.1. For instance, the pattern \x4b\x4b\
x4b . . . was not blocked, despite having exactly 4 bits set per
byte. Indeed, there are actually 70 characters (8 choose 4) that
have exactly 4 bits set, but our analysis found that only 40 of
those triggered censorship. What about the other 30?

These other 30 byte values all fall within the byte range
that comprises the printable ASCII characters, 0x20–0x7e.
We conjecture that the GFW exempts characters presumably
to allow “plaintext” (human-readable) protocols.

We found three ways in which the GFW exempts connec-
tions based on printable ASCII characters in the first packet
payload from the client: if the first six bytes are printable
(Ex2); if more than half of the bytes are printable (Ex3); or if
it contains more than 20 contiguous printable bytes (Ex4).

First six bytes are printable (Ex2). We observe that the
GFW exempts blocking if the first 6 bytes of a connection fall
within the printable byte range 0x20–0x7e. If there are char-
acters outside this range in the first 6 bytes, then a connection
may be blocked, assuming it does not have other exempting
properties (for example, fewer than 3.4 bits per byte set). We
tested this by generating messages where the first n bytes
were sourced from different character sets (such as ASCII
printable characters) and the rest of the message would be
random unprintable characters. We find that for n < 6, we
observe censorship, but for n≥ 6 where the first n bytes are
ASCII printable characters, no blocking occurs.

Half of the first packet are printable (Ex3). If more than
half of all bytes in the first packet fall into the printable ASCII

2656 32nd USENIX Security Symposium USENIX Association

f9 ab cd ef 9a 8d c1...
Unprintable bytes

First 6 bytes
unprintable

 BLOCKED

41 42 43 44 45 46 c1...
Printable bytes

First 6 bytes
printable

 NOT BLOCKED

(a) First six printable exemption (Ex2): the
GFW exempts a connection if the first six
bytes (or more) are all printable.

1e9ca7fab01b149dd2a1ef1aff
be149dd2a1476f6f6462796500

BLOCKED

<50% of data
is printable

6f726c6400616e6420494d4321
be149dd2a148656c6c6f200057

NOT BLOCKED

>50% of data
is printable

(b) Half printable exemption (Ex3): the
GFW exempts a connection if its first pay-
load has more than 50% printable ASCII.

494d43203a28149dd2a1ef9fff
...49dd2a1476f6f6462796520

BLOCKED

Run of only 14
printable bytes

6c6420616e6420494d43212121
...49dd248656c6c6f20776f72

NOT BLOCKED

 Run of >20
printable bytes

(c) Contiguous printable exemption (Ex4):
the GFW counts the max number of con-
tiguous printable bytes, and exempts a con-
nection if the value is more than 20 bytes.

avg 4
bits/byte

avg 1.67
bits/byte

49
01001001

fa
11111010

e3
11100011

91
10010001

5c
01011100

83
10000011

00
00000000

01
00000001

02
00000010

03
00000011

04
00000100

05
00000101

BLOCKED

NOT BLOCKED

(d) Popcount exemption (Ex1): the GFW calculates the
average number of bits set (popcount) per byte as a crude
measure of entropy, and exempts a connection if the value
is less than 3.4 or greater than 4.6.

GET␣/␣HTTP/1.1\r\n...
Fingerprint

HTTP
Matches

NOT BLOCKED

16 03 01 00 a5 01 00...
Fingerprint

TLS
Matches

NOT BLOCKED

f9 ab cd ef 9a 8d c1...
No fingerprint

No
Match

 BLOCKED

(e) Protocol exemption (Ex5): the GFW exempts a con-
nection if its first few bytes match HTTP or TLS protocol.

Figure 1: Examples of GFW’s traffic exemption rules — The GFW exempts a TCP connection if the payload of its first data
packet matches any of the rules above. Traffic not exempted by any of the rules will be blocked. Printable characters refer to
any character in range [0x20,0x7e]. Figures 1(a) , 1(b) , and 1(c) are introduced in Section 4.2. Figure 1(e) is introduced in
Section 4.3. Figure 1(d) is introduced in Section 4.1.

range 0x20–0x7e, the GFW exempts the connection. We
tested this by sending packets consisting of 10 bytes of char-
acters outside this range (e.g. 0xe8), followed by a repeating
sequence of 6 bytes: 5 within the range (e.g., 0x4b), and one
outside. We repeat this 6 byte sequence 5 times, and then
pad the end of the string with n bytes outside the range (in
Python notation: " \xe8"*10 + (" \x4b"*5 + "\xe8")*5 + "\
xe8"*n). This experiment gives us a variable-length pattern
that decreases the fraction of bytes in the printable ASCII
range as we increase n. We find that for n < 10, connections
are not blocked, while for n≥ 10 they are. This corresponds
to blocking when the fraction of printable characters is less
than or equal to half, and not blocking when greater than half.

We design our probes to avoid triggering other GFW ex-
emptions, such as bit counts (Ex1), printable prefixes (Ex2), or
runs of printable characters (Ex4). For example, we use 0x4b
and 0xe8 as our printable and non-printable characters respec-
tively, since they both have exactly 4 bits set. This prevents
the GFW from exempting our connection from blocking due
to the bit count rule (Ex1) discussed previously. In addition,
we avoid having contiguous runs of printable 0x4b characters,
as we observed that such runs can also exempt a connection
from blocking, which we discuss next. We repeated our ex-
periments with other patterns that also met these constraints
(e.g. 0x8d and 0x2e), and observed the same results.

More than 20 contiguous bytes are printable (Ex4). A
contiguous run of printable characters can also exempt block-
ing, even if the total fraction of printable characters is less
than half. To test this, we sent a pattern of 100 bytes of a

character outside the printable range (0xe8) with a varying
number of contiguous bytes from the printable range (we used
0x4b). Our payload started with 10 bytes of 0xe8, followed
by n bytes of 0x4b, and then 90−n bytes of 0xe8, for a total
length of 100 bytes. We varied n from 0–90, and sent each
of the 91 payloads in 25 connections to our server. We found
that with n ≤ 20, the connection was blocked. For n > 20,
the connection was not blocked, indicating the presence of a
run of printable characters exempts blocking. Of course, past
n > 50, the connection will also be exempt, because of Ex3.

Other encodings. We tested whether Chinese characters in
the first packet were exempted from blocking in the same
way as printable ASCII characters did. We used strings of
6–36 Chinese characters encoded in UTF-8, as well as GBK
(identical to GB2312 for the character we used). All of these
tests were blocked, suggesting that there is no exemption for
Chinese characters. It is possible that the presence of Chinese
characters in these encodings is rare, or that parsing these
encodings adds unjustified complexity since it is hard to know
where an encoded string starts or ends.

4.3 Common Protocols Exemption (Ex5)
To avoid blocking popular protocols by mistake, we observe
that the GFW explicitly exempts two popular protocols. The
GFW appears to infer protocols from the first 3–6 bytes of the
client’s packet: If they match the bytes of a known protocol,
the connection is exempted from blocking, even if the rest
of the packets do not conform to the protocol. We tested six

USENIX Association 32nd USENIX Security Symposium 2657

common protocols and found that the TLS and HTTP proto-
cols are explicitly exempted. This list may not be exhaustive,
as there may be other exempted protocols we did not test.

TLS. TLS connections start with a TLS Client Hello mes-
sage, and the first three bytes of this message cause the GFW
to exempt the connection from blocking. We observe that the
GFW exempts any connection whose first three bytes match
the following regular expression:

[\x16-\x17]\x03[\x00-\x09]

This corresponds to the one-byte record type, followed
by a two-byte version. We enumerated all 256 patterns of
‘XX\x03\x03’ followed by 97 bytes of random data, and
found all patterns were blocked except those that start with ei-
ther 0x16 (corresponding to the Handshake TLS record type,
used in the Client Hello) or 0x17 (corresponding to the Ap-
plication Data record type). While normal TLS connections
do not begin with Application Data [52, 53], when TLS is
used over Multipath-TCP (MPTCP) [31], it is common for
one of the TCP subflows to be used for the Client Hello and
for other subflows to send Application Data immediately after
the TCP connection is established [15]. As of today, only TLS
versions 0x03[0x00-0x03] have been defined [52, 53], but
the GFW allows even later (not yet defined) versions.

HTTP. The byte pattern used by the censor to identify HTTP
traffic is simply the method followed by a space. If a message
starts with GET , PUT , POST , or HEAD , the connection will
be exempt from blocking. The space character (0x20) after
each verb is necessary to exempt connections from blocking.
Not including this space character, or replacing it with any
other byte will not exempt the connection. The other HTTP
methods (OPTIONS , DELETE , CONNECT , TRACE , PATCH)
fall into the ASCII printable exemption (Ex2), as the first 6
bytes are printable characters. We find that the method is case-
insensitive: GeT , get , and similar variations are exempt.
Typos in the verb (e.g., TEG) are not exempt.

Non-exempted protocols. We tested other common proto-
cols: SSH, SMTP, and FTP would be exempt as they all start
with at least 6 bytes of printable ASCII (rule Ex2). DNS-over-
TCP is exempt due to containing a large fraction of zeros,
making it exempt by the Ex1 rule. However, if a large enough
amount of random data was appended after a DNS-over-TCP
message, it would be blocked.

This observation raises the question of why the censor
has explicit rules to exempt TLS and HTTP, but not other
protocols. After all, the censor does not need to exempt these
two protcols explicitly: HTTP will commonly be exempt by
printable ASCII for the first 6 bytes (rule Ex2), and TLS
Client Hello messages have relatively low bit-wise entropy
(rule Ex1), owing to many zero fields. Nonetheless, the censor
may employ these simple but efficient rules to quickly exempt
the bulk of traffic (TLS and HTTP) from the more in-depth
analysis of calculating the popcount, fraction of ASCII, etc.

4.4 How the GFW Disrupts Connections
Once the GFW detects fully encrypted traffic using Algo-
rithm 1, it blocks the subsequent traffic as introduced below.

Packets are dropped from client to server. We triggered
the GFW’s blocking and compared the captured packets from
both the sending client and receiving server. We observe that
after triggering blocking, the client’s packets are dropped by
the GFW, and do not reach the server. However, packets sent
by the server are not blocked and are still received at the client.

UDP traffic is not affected. The new censorship system is
limited to TCP. Sending a UDP datagram with a random pay-
load cannot trigger the blocking. Additionally, once a 3-tuple
(client IP, server IP, server Port) is blocked due to a triggering
TCP connection, UDP datagrams to or from the same (server
IP, server Port) are not affected. Because of the absence of
UDP blocking, users may experience odd behavior while us-
ing Shadowsocks: they can still access websites or use apps
that rely on UDP (e.g. QUIC or FaceTime), but cannot ac-
cess websites that use TCP. This is because Shadowsocks
proxies TCP traffic with TCP and proxies UDP traffic with
UDP. Not detecting or blocking UDP traffic may reflect the
censor’s worse is better engineering mindset. From a prac-
tical view, the current TCP blocking can already effectively
paralyze these popular circumvention tools, while employ-
ing UDP censorship requires additional resources and invites
extra complexity to the censorship system.

Traffic on all ports can get blocked. We set up a sink server
listening on all ports from 1 to 65535 in US. We then let our
client in China continuously make connections with 50-byte
random payloads to each port of the US server and stop when a
port got blocked. We find that blocking can happen on all ports
from 1 to 65535. Therefore, running circumvention servers
on an unusual port cannot mitigate the blocking. We also do
not observe any difference in censor’s behaviors among ports.

The duration of residual censorship is affected by the
number of on-going residual blocking. We find that once
this new censorship system blocks a connection, it continues
to drop all subsequent TCP packets having the same 3-tuple
(client IP, server IP, server port) for 120 or 180 seconds. This
behavior is often referred to as “residual censorship” [13, 14,
17, 63]. Unlike some other residual censorship systems [13],
the GFW’s residual censorship timer does not reset when
additional packets are sent.

We also find that the GFW seems to limit the number of
connections it residually blocks at any given time. We let
our clients in China repetitively make connections to 500
ports of a single server simultaneously. In each connection,
the client sent 50 bytes of random data and then closed the
connection. We recorded the duration of each occurrence of
residual censorship. As shown in Figure 2, in comparison to
the 180 s duration when only one port is blocked, the residual
censorship duration in this experiment decreased dramatically.

2658 32nd USENIX Security Symposium USENIX Association

0 25 50 75 100 125 150 175
Duration of residual Censorship (s)

0

2000

4000

6000

8000

10000

12000

14000

of

 b
lo

ck
ed

 c
on

ne
ct

io
ns

M
in

:7

M
ax

:1
83

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Histogram
ECDF

Figure 2: Residual censorship duration — When we repeti-
tively send 50-byte random data to 500 ports of a single server
simultaneously, the residual censorship time decreases dramat-
ically. About 40% of the blockings lasted only 10 s, shorter
than the 180 s duration when only one port was blocked. This
suggests that the GFW may limit the number of connections
it residually blocks at any given time.

4.5 How the GFW Reassembles Flows

In this section, we examine how the GFW’s new censorship
system reassembles flows and considers flow directions.

A complete TCP handshake is necessary. We observe that
sending a SYN packet followed by a PSH+ACK packet contain-
ing random data (without the server completing its end of the
handshake) is not sufficient to trigger blocking. The blocking
is thus harder to exploit for residual censorship attacks [13].

Only client-to-server packets can trigger the blocking.
We find that the GFW not only checks if the random data
is sent to a destination IP address that falls in an affected IP
range, it also examines and will only block if the random data
is sent from client to server. The server here is defined as the
host that sends a SYN+ACK during the TCP handshake.

We learned this by setting up four experiments between the
same two hosts. In the first experiment, we let the Chinese
client connect and send random data to the foreign server; in
the second experiment, we still let the Chinese client connect
to the foreign server, but let the foreign server send random
data to client; in the third experiment, we let the US client
connect and send random data to Chinese server; in the forth
experiment, we let the US client connect to the Chinese server,
but then let the Chinese server send random data to the US
client. Only connections in the first experiments were blocked.

The GFW only examines the first data packets. The GFW
appears to only analyze the first data packet in a TCP con-
nection, without reassembling the flows with multiple data
packets. We tested this with the following experiment. After
a TCP handshake, we send the first data packet with only one

byte of payload \x21. After waiting for one second, we then
send the second data packet with a 200-byte random payload.
We repeated the experiment 25 times, but the connections
never got blocked. This is because after seeing the first data
packet, the GFW had already exempted the connections by
rule Ex1 as it contained 100% printable ASCII in the payload.
In other words, if the GFW reassembled multiple packets into
a flow during its traffic analysis, it would have been able to
block these connections.

We found that the GFW does not wait until seeing an ACK
response from the server to block a connection. We config-
ured our server to drop any outgoing ACK packets with an
iptables rule. We then made connections with 200-byte
random payloads to the server. The GFW still blocked these
connections though the server never sent any ACK packets.

The GFW waits more than 5 minutes for the first data
packets. We examine how long the GFW monitors a TCP
connection after the TCP handshake, but before it sees the first
data packet. From the observation that it requires a complete
TCP handshake to trigger the blocking, we infer the GFW
may be stateful. It is thus reasonable to suspect the GFW only
monitors a connection for a limited amount of time, as it can
be expensive to maintain a state forever without expiring it.

Our client completed TCP handshakes and then waited for
100, 180, or 300 seconds, before sending 200 bytes of random
data. We then repeated the experiment but used iptables

rules to drop any RST or TCP keepalive packets in case they
helped the GFW keep the connection state active. We found
that these connections still triggered blocking, suggesting the
GFW maintained connection states for at least five minutes.

5 Relation with the Active Probing System

As introduced in Section 2.2, the GFW has been sending ac-
tive probes to Shadowsocks servers since 2019 [5]. In this
section, we study the relationship between this newly dis-
covered real-time blocking system and the existing active
probing system. By conducting designed measurement exper-
iments and analyzing historical datasets, we show that while
these two censorship systems work in parallel, the current
traffic analysis module of the active probing system applies
all five sets of exemption rules summarized in Algorithm 1
and Figure 1, with one additional rule that examines the pay-
load length of the first data packet. We also show evidence
that the traffic analysis algorithm used by the active probing
system [5] may have evolved since 2019.

Active probing experiment. Prior to the deployment of this
new real-time blocking system, inferring the traffic analysis
algorithm of the active probing system was extremely chal-
lenging, if possible at all. This is because the GFW employs
an arbitrary delay between seeing a triggering connection and
sending active probes [5, §3.5], making it difficult to account

USENIX Association 32nd USENIX Security Symposium 2659

Crafted Payload Affected Server Unaffected Server
connections # probes # connections # probes

2-byte random (\xfe\x01) 33k 0 169k 0
50-byte random 29k 0 169k 0
200-byte random 33k 141 169k 679
"GET " + 50-byte random 170k 0 169k 0
\x16\x03\x03 + 50-byte random 170k 0 169k 0
\x17\x03\x03 + 50-byte random 170k 0 169k 0
"GET " + 50-byte random 170k 0 169k 0
\x16\x03\x03 + 200-byte random 170k 0 169k 0
\x17\x03\x03 + 200-byte random 170k 0 169k 0
Low bit counting (2.5) 170k 0 169k 0
High bit counting (5.2) 170k 0 169k 0
More than half printable 170k 0 169k 0
First six bytes printable + 200-byte random 170k 0 169k 0
More than 20 contiguous bytes 170k 0 169k 0

Table 2: Number of connections received from our controlled client and number of active probes received from the GFW. Between
May 19, 2022 and June 8, 2022, our client repetitively sent the same 14 payloads from a VPS in Tencent Cloud Beijing datacenter
in China, to 14 ports of two different hosts in the DigitalOcean San Francisco datacenter in US. One US host is known to be
affected by the current blocking system, while the other US host is unaffected. In total, our client in China repetitively sent around
170k connections to each port of the two US servers. The only exception is, when the residual censorship was triggered and the
client could not make connections to the affected server, the total number of successful legitimate connections was around 33k.

for which probes by the GFW are triggered by which con-
nections we send. Now that we have inferred a list of traffic
detection rules of this new blocking system in Section 4, we
can test if a payload exempted by Algorithm 1 will also not
get suspected by the active probing system.

We conducted the experiments between May 19, 2022 and
June 8, 2022. As shown in Table 2, we crafted 14 different
types of payloads: three of them are random data with lengths
of 2, 50, and 200 bytes; the remaining 11 were data with
various lengths that will only be exempted by exactly one
of the exemption rules in Algorithm 1. We then sent the
same 14 payloads from a VPS in Tencent Cloud Beijing
China, to 14 ports of two different hosts in DigitalOcean San
Francisco US. One US host is known to be affected by the
current blocking system, while the other US host is unaffected.
This way, if we received any probes from the GFW, we know
certain exemption rules used by the current blocking system
are not used by the active probing system.

In total, our client in China sent around 170k connections
to each port of the two US servers. We then took steps to
isolate the GFW’s probes from other Internet scanners’. We
check the source IP address of each probe against IP2Location
database [3] and AbuseIPDB [2]. We do not consider it as
a probe from the GFW if it was a non-Chinese IP or from a
known spammer IP address. We further check if the probe
belongs to any known types of probes sent by the GFW.

The two systems work independently. The new censorship
machine makes its blocking decisions purely based on passive
traffic analysis, without relying on China’s well-known active

probing infrastructure [5,27,64,66,67]. We know this because,
while the GFW still sends active probes to the servers, in more
than 99% of the tests, the GFW did not send any active probes
to the server before blocking a connection. For example, as
summarized in Table 2, we made 33,119 connections but only
received 179 active probes. Indeed, similar to the findings by
prior work [5, §4.2], active probes are rarely triggered.

We want to emphasize that this finding does not mean that
defenses against active probing are not necessary or not im-
portant anymore [5, 9, 34]. On the contrary, we believe that
the GFW’s reliance on purely passive traffic analysis is par-
tially because Shadowsocks, Outline, VMess, and many other
censorship circumvention implementations have adopted ef-
fective defenses against active probing [5,9,19,32,34,43,71].
The fact that the GFW still sends active probes to servers
implies that the censor still attempts to use active probing to
accurately identify circumvention servers whenever possible.

The active probing system applies the five exemption rules,
with one additional length rule, to suspect traffic. This
experiment suggests two points. First, similar to the findings
by Alice et al. [5, §4.2], the active probing system applies an
additional rule to examine the length of the connection. In our
case, only connections with 200-byte payloads ever triggered
the active probing, not ones with 2 bytes or 50 bytes. Second,
the traffic exempted by any of the five rules discovered in
Algorithm 1 will also not trigger the active probing system.

The active probing system has evolved since 2019. We
want to know if the same detection rules in Algorithm 1 were
historically used to trigger active probing. To analyze it, we

2660 32nd USENIX Security Symposium USENIX Association

obtained 282 payloads that got replayed (and thus once trig-
gered the GFW) in the low-entropy experiment from Alice
et al. [5, §4.1]. We then wrote a program to determine if a
payload would be exempted by the current blocking system,
and fed the program with the obtained 282 payloads. As a re-
sult, 45 probes that previously triggered active probing were
exempted (by rule Ex3). On May 19, 2022, we repeatedly
sent these 45 payloads through the GFW, confirming that they
were indeed exempted from the current blocking. For each
payload, we made 25 connections with it from a VPS in Ten-
centCloud Beijing to a sink server in DigitalOcean SFO. This
result suggests that the GFW has likely updated the traffic
analysis module of its active probing system since 2020. In
addition, the probes sent by the current GFW are also differ-
ent from those observed in 2020 [5, §3.2]. The new probes
are essentially random payloads that are distributed in trios
of 16, 64, and 256 bytes. For each of these lengths, the GFW
sent about the same number of probes: 48, 46, and 47 to one
server, and 238, 228, and 233 to the other.

6 Understanding the Blocking Strategies

In this section, we conduct measurement experiments to char-
acterize the censor’s blocking strategies. We find that, possibly
to mitigate false positives and reduce operation costs, the cen-
sor strategically limits the scope of blocking to specific IP
ranges of popular data centers, and it applies a probabilistic
blocking strategy to 26% of all connections to these IP ranges.

6.1 Internet Scanning Experiment
On May 12, 2022, we performed a 10% IPv4 Internet scan
on TCP port 80, from a server located at CU Boulder. Fol-
lowing prior work that identifies unreliable hosts in Internet
scans [41], we remove IPs that respond with a TCP window
of 0 (as we cannot send them data), or do not accept a sub-
sequent connection. This leaves us with 7 million scannable
IPs. We then randomly and equally split these 7 million IP
addresses into nine subsets, and assigned each to our nine van-
tage points in TencenCloud Beijing datacenter. We then used
a measurement program we wrote and installed in all nine
vantage points for the experiment. For each IP, the program
connects to its port 80 sequentially up to 25 times, with a one-
second interval in between. In each connection, we send the
same 50 bytes of random data that can trigger the blocking.
If we see 5 consecutive connections time out (fail to connect)
after we have sent data, we label the IP as affected. Otherwise,
if all 25 connections succeed, we label the IP as unaffected.
We label IPs that we cannot connect to at all as unknown (e.g.,
the server is down, or a network failure unrelated to the GFW
prevents us from connecting in the first place).

We also repeated this process but sent 50 bytes of \x00,
which does not trigger blocking by the GFW. If a server is
marked as affected in this test, it is likely due to the server

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Fraction of {AS,prefix} affected

AS
/20 Prefixes

Figure 3: Affected fraction of ASes and prefixes — For
each AS (and /20 prefix), we calculate the fraction of GFW-
affected IPs over all tested IPs in it, and plot the CDF. We can
see that only a small fraction of ASes are affected, and most
subnets are “all-or-nothing” (either the entire subnet’s IPs are
affected, or few to none are).

blocking us, and not the GFW, and we remove these IPs from
our results. This leaves just over 6 million IPs.

Finally, we remove “ambiguous” results that may be due
to intermittent network failures or unreliable vantage points.
Specifically, we remove IPs that either of our random or zero
scans labelled unknown (we were never able to connect), or
had intermittent connection timeouts (e.g., several connec-
tions timed out, but not 5 consecutively). This leaves 5.5 mil-
lion IPs that we can easily label as unaffected (all 25 con-
nections succeeded) or affected (at some point it appeared
blocked after we sent random data).

6.2 Not All Subnets/ASes are Affected Equally

Of the 5.5 million processed IPs, 98% of them are un-
affected by the GFW’s blocking, suggesting that China is
fairly conservative in employing this new censorship. We
group these 5.5 million IP addresses into their allocated IP
prefixes and ASes, using pyasn with an AS database from
April 2022 [51]. For IP prefixes larger than /20, we break the
allocation into a set of /20 prefixes to keep allocations roughly
the same size. Our 5.5 million IPs comprise 538 unique ASes
that have at least 5 results, and the vast majority of these are
largely unaffected by the GFW’s blocking.

Figure 3 shows the distributions of the fraction of affected
ASes and /20 prefixes. We found that more than 90% ASes
are affected in an all-or-nothing way: either all IP addresses
we tested in the AS are affected by the GFW’s blocking, or
no IP addresses we tested in the AS are unaffected. We also
observe that only a few ASes are affected: over 95% of ASes
see less than 10% of their IPs affected, and only 7 ASes see
more than 30% of their IPs affected.

USENIX Association 32nd USENIX Security Symposium 2661

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fraction of prefix blocked

Digital Ocean (14061)
Constant Co. (20473)

Alibaba US (45102)
Linode (63949)

Akamai (16625)
Amazon (16509)

Cloudflare (13335)

Figure 4: Top affected ASNs — We observe that not all ASes
are affected, and even within each AS, different prefixes are
affected differently. For each AS, we looked at each /20 in
their network, and calculated the fraction of IPs blocked in
each /20 subnet. The results were very close to all-or-nothing:
either all IPs in a /20 were affected, or none were.

Figure 4 shows the top affected ASes. While this is skewed
toward larger ASes (which have more IPs in our scan), it
shows both ASes that are heavily affected (e.g., Alibaba US,
Constant) and ones that are not (Akamai, Cloudflare). In ad-
dition, some ASes have a mix of affected and not affected
prefixes (Amazon, Digital Ocean, Linode). All of the affected
or partly-affected ASes we see are popular VPS providers
that could be used to host proxy servers, while large unaf-
fected ASes do not typically sell VPS hosting to individual
customers (e.g. CDNs).

6.3 Characterizing Probabilistic Blocking
As introduced in Section 3, we send up to 25 connections
with the same payload before drawing any conclusions about
blocking. This is necessary because the censor implements
blocking probabilistically. In other words, just sending a ran-
dom payload to an affected server once would only sometimes
trigger blocking; however, if one keeps making connections
with the same payload to the affected server, blocking will
occur eventually. This raises the question on what the proba-
bility is for a connection to get blocked, and why the censor
implements blocking only probabilistically.

Estimating the blocking rate. From our 10% Internet scan
(Section 6.2), there were 109,489 IP addresses that we label as
blocked. As shown in Figure 5, the distribution of the number
of successful random data connections we can make to each
IP address before getting blocked fits a geometric distribution.
This result suggests that the blocking of each connection is
independent, with a probability of 26.3%.

Why probabilistic blocking is used. We conjecture that the
censor employs probabilistic blocking possibly for two rea-
sons: First, it allows the censor to only examine one-fourth of

0 5 10 15 20
Number of successful connections to a ip:port before blocking

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

observed blocking
geometric distribution, where p = 0.263

Figure 5: CDF of the number of successful connections from
our client in China to each of 109,489 affected IP addresses
before getting blocked. We made up to 25 connections to
port 80 of each IP address. The distribution fits a geometric
distribution, suggesting the blocking of each connection is
independent, with a probability of p = 26.3%.

connections, reducing computation resources. Second, it helps
the censor reduce the collateral damage to non-circumvention
connections. While this reduction also comes at the expense
of lower true positives, the residual censorship may make up
for it: once a connection is determined to be blocked, subse-
quent connections are also blocked for several minutes after,
making it difficult for proxy users to successfully connect
once detected. This may also further support prior claims that
censors put more emphasis on reducing their false positive
rate than in achieving a high true positive rate [57].

7 Evaluating the GFW’s Detection Rules

In this section, we evaluate the false positive rate and com-
prehensiveness of the GFW’s detection rules we inferred in
Section 4. To determine the impact this blocking may have
on regular traffic, we simulate the inferred detection rules to
traffic on our university network without actually blocking
any traffic. Different from the GFW, we simulate the detection
rules against all TCP connections observed without limiting
the detection to 26% of connections to specific IP ranges of
popular data centers. We expect to see little to no circum-
vention traffic in this network, and any traffic that would be
blocked under detection rules likely represents false positive
blocking. We find that the inferred detection algorithm would
block roughly 0.6% of all connections on our network. Due to
the black-box nature of the GFW, our inferred rules may only
be a subset of what the GFW uses; however, we show that
all connections that Algorithm 1 would block were indeed
blocked when we sent their prefixes along with random data
through the GFW, suggesting our inferred rules have good
coverage of what the GFW uses.

2662 32nd USENIX Security Symposium USENIX Association

Passed Entropy (Ex1)

3 Byte Pattern (Ex5)

20 Straight Printable (Ex4)

Over 50% Printable (Ex3)

First Six Printable (Ex2)

4 Byte Pattern (Ex5)

No Rule Matched

5 Byte Pattern (Ex5)

107

108

109

Nu
m

be
r o

f C
on

ne
ct

io
ns

51
.4%

37
.3%

6.7
%

1.1
%

0.6
%

0.5
%

0.5
%

0.5
%

0.3
%

0.3
%

0.3
%

0.2
%

0.1
%

0.1
%

Exempted
Blocked

Figure 6: Common exemptions — For each connection on
CU Boulder tap, we determine which rules in Algorithm 1
would exempt it from being blocked. We divide the exemption
rule Ex5 in Section 4.3 into 3-, 4-, and 5-byte patterns and
present them in three rows for fine-grained classification. We
analyze 1.7 billion connections collected from July 2022
until September 2022. For brevity, this graph only shows
intersections with a count greater than 1,000,000. We observe
37 different intersections of exemptions in the full set.

7.1 Traffic Analysis Experiment

We have access to a 40 Gbps network tap at CU Boulder
that allows us to process copies of all incoming and outgoing
packets on our campus. Using this, we collected a dataset
comprising only destination port numbers and the first 6 bytes
of payload data for connections that do not already satisfy the
other exemption rules in Algorithm 1. More precisely, we im-
plemented a custom packet analysis tool using PF_RING [50].
For each connection, we inspected the first data packet sent by
the client. We ensured that the packet has a correct TCP check-
sum, and that its sequence number is the first expected data
packet after the TCP handshake in the connection (making
sure we have not missed the first data packet). For connections
that are not exempted by Algorithm 1—i.e., those we expect
to be blocked—we logged the destination port and the first
six bytes of the connection to help identify its protocol.

We performed this collection between July 2022 and
September 2022. In total, we analyzed 1.7 billion connec-
tions and logged 442,928 unique 6-byte prefixes of would-
be-blocked connections. For each of these 442,928 6-byte
prefixes, we append the same 194-byte random data to it to
make a 200-byte payload. We then repetitively sent each pay-
load past the real GFW in September 2022, to test whether
they were indeed blocked, or if instead there were exemptions
we had not previously identified. For each payload, we made
up to 25 connections with it from a VPS in TencentCloud
Beijing to a sink server in DigitalOcean SFO.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1x106

C
D

F
o
f

b
lo

ck
e
d

 c
o
n
n
e
ct

io
n
s

Number of unique first 6-bytes

random

Figure 7: The first 6-bytes of blocked connections — For
the 9.7 million (0.6%) connections from our tap that would
be blocked under the GFW rules we inferred, we count the
occurences of their unique first 6-bytes. The most popular 6-
byte prefix appears in over 479 thousand connections (5.0%),
meaning a rule that explicitly allowed this 6-byte value could
reduce the GFW’s false-positive rate by this amount.

7.2 Experiment Results and Analysis

Estimating the false positive rate. In total, we analyzed 1.7
billion connections on our network between July 2022 and
September 2022. For each connection, we determine which
rules in Algorithm 1 would exempt it from being blocked. As
shown in Figure 6, we observe on average that 0.6% of TCP
connections from our tap would be blocked under the GFW’s
detection rules we inferred.

There are at least two strategies the censor employs to
reduce the false positive rate. First, as introduced in Section 6,
the GFW only applies this censorship to a fraction of IP
subnets. This decision may be an attempt to mitigate the base-
rate problem faced by the censor [11]. Since relatively few
connections in total are proxy connections, even a small false
positive rate (such as 0.6%) would result in blocking mostly
benign traffic, if applied broadly. By narrowing the scope of
IPs it is applied to, China can reduce the collateral damage of
its censorship. Second, as explored in Section 6.3, even for
traffic towards this subset of IP subnets, the GFW is observed
to block only about one-quarter of all traffic, reducing the
false positive rate to one-fourth.

It is possible that the 0.6% of connections we identified
may be fully encrypted proxies. To investigate this possibility,
we keep a count of the number of unique 6-byte prefixes
we see in each connection that would be blocked under the
GFW’s rules. If these connections are all truly fully encrypted
proxies, we would expect to see a uniform distribution over
the 2566 possible 6-byte values. Otherwise, if there are 6-byte
values that occur frequently, it could be headers of popular
protocols, indicating false positives in the GFW’s blocking.

Figure 7 shows the distribution of the first 6 bytes of all
9.7 million connections from our tap that would be blocked

USENIX Association 32nd USENIX Security Symposium 2663

Bytes in hex Port Occurences

45 44 00 01 00 00 5222 479K 5.0%
ee 2f 8c ec 40 d1 8000 427K 4.4%
00 00 00 00 00 00 50386 104K 1.1%
00 c4 71 58 64 51 443 34K 0.4%
00 c4 71 42 30 6e 443 33K 0.3%
0e 53 77 61 72 6d 7680 32K 0.3%
1b 00 04 c6 27 53 8886 32K 0.3%
c6 e6 cd ed 00 00 33445 29K 0.3%
00 01 00 00 0f 00 443 27K 0.3%
16 f1 04 00 a1 00 80 12K 0.1%

Table 3: Ten most common first six bytes of blocked con-
nections — We record the first six bytes of all connections
that we simulate as blocked on the CU Blouder network. In
this data, we find repeated six bytes and display the top ten,
the most common port it appeared on, and the respective per-
centage of the total simulated blocked connections.

under the GFW rules we inferred. In addition, Table 3 shows
the top 6-byte values from would-be blocked connections.
While we are not able to identify many of these protocols,
their frequency along with the low entropy indicates that they
are not likely to be fully encrypted proxies.
Estimating the comprehensiveness of the inferred
rules. Among the 442,928 payloads we crafted and sent
past the real GFW, we found only one prefix got exempted
by the GFW, which alerted us to the TLS Application Data
prefix exemption (\x17\x03[\x00-\x09]). We added this
exemption to our inferred rules (Ex5). This result suggests
our inferred rules have good coverage of what the GFW uses.

8 Circumvention Strategies

Our understanding of this new censorship system allows us to
derive multiple circumvention strategies. In Section 8.1 and
Section 8.2, we introduce two widely adopted countermea-
sures that have been helping users in China bypass censor-
ship since January 2022 and October 2022, respectively. We
discuss other circumvention strategies in Appendix A. We
responsibly and promptly shared our findings and suggestions
with the developers of various popular anti-censorship tools
that have millions of users, which we detail in Section 8.3.

8.1 Customizable Payload Prefixes

The exemption rules Ex2 and Ex5 from Algorithm 1 only look
at the first several bytes in a connection, allowing the GFW to
efficiently exempt non-fully encrypted traffic; however, this
lends itself to a potential countermeasure. Specifically, we
propose prepending a customizable prefix to the payload of
the first packet in a (circumvention) connection.

Customizable IV header. Shadowsocks connections begin
with an Initialization Vector (IV), which is of length 16 or
32 bytes depending on the encryption ciphers [22]. As intro-
duced in Section 4.2, turning the first six (or more) bytes of
the IVs into printable ASCII will exempt connections by the
rule Ex2. Similarly, turning the first three, four, or five bytes
of the IVs into common protocol headers will exempt connec-
tions by the rule Ex5 (e.g., turning the first three bytes of an
IV into 0x16 0x03 0x03). These countermeasures require
minimal changes to the client and no changes to the server,
and therefore has been adopted by many popular circumven-
tion tools [48, 56, 62, 72]. Restricting the first few bytes of a
32-byte IV to be printable ASCII will not reduce the random-
ness to the point that affects the security of encryption. For
example, even fixing the first six bytes to printable ASCII still
leaves the IVs with 26 random bytes, which is still more than
a typical 16-byte IV.

Limitations. This is a stopgap solution and could potentially
be blocked by the censor fairly easily. The censor may skip
the first several bytes and apply the detection rules to the
rest data in a connection. Protocol mimicry is also difficult
in practice [39]. The censor can enforce stricter detection
rules, or actively probe a server to check if it is genuinely
running TLS or HTTP. Nevertheless, the fact that this strategy
still works as of February 2023, more than one year since
its adoption by many popular circumvention tools in January
2022, underscores that even simple solutions can be effective
against finite-resourced censors [8, 30, 57].

8.2 Altering Popcount

As introduced in Section 4.1, the GFW exempts a connection
if its first data packet has an average popcount-per-byte ≤ 3.4
or ≥ 4.6 (Ex1). Based on this observation, one can increase
(decrease) the popcount by inserting additional ones (zeroes)
into the packet to bypass censorship. We introduce and an-
alyze a flexible scheme that alters the popcount-per-byte to
any given value or range. We implemented this scheme on
Shadowsocks-rust [54] and Shadowsocks-android [6], help-
ing users in China bypass censorship since October 2022 [8].
In January 2023, a large-scale circumvention service in China
(that asked not to be named), also implemented a version of
this scheme and found similar success.

At a high level, we take original fully-encrypted packets
as input: By operating only on the ciphertexts, we do not
risk violating confidentiality. When sending a packet, we first
compute its average popcount-per-byte; if the value is greater
than 4, then we determine how many one-bits we would have
to add to the packet in order to obtain a popcount over 4.6.
Conversely, if the popcount is less than 4, then we determine
how many zero-bits we would have to add to decrease the
popcount to less than 3.4. In either case, we append the neces-
sary number of one- or zero-bits to the original ciphertext and

2664 32nd USENIX Security Symposium USENIX Association

then append 4 bytes denoting the number of bits added, ulti-
mately giving us a bit-string B that has a popcount-per-byte
that would not subject it to censorship.

Of course, simply appending ones or zeroes would be easy
to fingerprint. To address this, we do bit-level random shuf-
fling. In particular, we leverage the existing shared secrets,
such as password, as a seed to deterministically construct a
permutation vector. In each connection, we update this permu-
tation vector and use it to shuffle all the bits in the bit-string
B before sending it. To decode, the receiver first updates the
permutation vector and then uses it to un-shuffle the bit-string;
then it reads the last 4 bytes to determine the number of bits
added, removes that number of bits, and is thus able to recover
the original (fully encrypted) packet.

In practice, we take two additional steps to further obfus-
cate the traffic. Since it is an obvious fingerprint if all connec-
tions share the same popcount-per-byte value, we set the goal
value to a parameterizable range. Second, since the 4-byte
length tag in plaintext may be a fingerprint, we encrypt it (the
same way these circumvention tools encrypt proxy traffic).

This scheme has several advantages. First, the scheme sup-
ports parameterizable popcount-per-byte in case the GFW up-
dates its popcount rule to block an even larger range. Second,
because of its careful design, there are no obvious fingerprints
that would signal to the censor that this is a popcount-adjusted
packet. Finally, it incurs low overhead; it adds only as many
ones (or zeroes) strictly necessary (padded to the nearest byte).
In the worst case—increasing the popcount from 4 to 4.6—
this incurs only about 17.6% overhead. As a result, it could
feasibly be applied not just to the first packet, but to every
packet in the connection, thereby insulating it against future
updates to the censor that might look past the first packet.

8.3 Responsible Disclosure

On November 16, 2021, ten days after the GFW employed this
new blocking [10], we revealed details of this new blocking
to the public [37, 38]. With the development of our under-
standing of this new blocking, we derived and evaluated dif-
ferent circumvention strategies. We responsibly and promptly
shared our findings and suggestions with the developers of
various popular anti-censorship tools that have millions of
users, including Shadowsocks [22], V2Ray [59], Outline [42],
Lantern [20], Psiphon [21], and Conjure [33]. Below we
introduce our disclosure and the responses from the anti-
censorship community in detail.

On January 13, 2022, we shared our first circumvention
strategy with a group of developers. This solution, detailed in
Section 8.1, requires minimal code changes to the clients and
no changes to the servers. By January 14, 2022, Shadowsocks-
rust developer zonyitoo, V2Ray developer Xiaokang Wang
and Sagernet developer nekohasekai had already added this
circumvention solution as an option to their clients [48, 62,
72]. On October 4, 2022, database64128 implemented a user-

customizable version of this strategy on Shadowsocks-go [18].
On October 25, 2022, Outline developers adopted a highly
customizable solution for their client [56]. On October 14,
2022, we released a modified Shadowsocks [8] that employed
the popcount-altering strategy we detailed in Section 8.2.

As of February 14, 2023, all circumvention strategies
adopted by these tools are reportedly still effective in China.
In January 2023, Outline developers reported that the num-
ber of Outline servers (that opted-in for anonymous metrics)
had doubled since they adopted the mitigation above. In Jan-
uary 2023, a large circumvention service provider in China
(that asked not to be named at this time) also implemented
our proposed scheme and has also found success.

While we did not study countries other than China, our pro-
posed circumvention strategies are reported to be also work-
ing in Iran, another country that reportedly blocks and throttles
fully encrypted proxies [65]. On February 13, 2023, Lantern
developers reported that the adopted protocol “accounted
for the majority of our Iran traffic” since January 2023. On
February 13, 2023, a different circumvention service provider
reported that, after enabling Outline’s mitigation feature in
November 2022, their services turned from being completely
blocked to serving 850k daily users from Iran.

9 Ethics

Censorship measurement research carries an element of risk
and responsibility which we take seriously. Our research in-
volves handling sensitive network traffic, scanning large num-
bers of hosts, and performing network measurements in a
sensitive country. Due to the sensitive nature of this work, we
approached our institution’s IRB with our detailed research
plan for review. While the IRB determined that the work does
not involve human subjects (and thus does not require IRB
review), we have designed and implemented extensive precau-
tionary efforts to minimize potential risks and harms. In this
section, we discuss these risks and detail the precautionary
measures we adopted to manage and mitigate them.

Traffic analysis. We worked closely with our university’s
network operators, who have extensive experience in manag-
ing such projects, to deploy our network measurement tool to
ensure it is within the network use policy and respects user
privacy. We design our experiments to avoid collecting poten-
tially sensitive information, such as IP addresses, which could
reveal human identifiable information. We collect minimal
information and focus on tracking aggregate statistics to avoid
potentially identifying individuals. Specifically, we only ana-
lyzed the very first TCP data packet in each connection and
ignored any subsequent packets. In addition, we only logged
the first six bytes of data and keep an aggregate count of their
occurrences; no raw traffic was ever inspected by a human
nor logged. We practiced the least privilege principle, giving
only a subset of our team access to this data.

USENIX Association 32nd USENIX Security Symposium 2665

Internet scanning. To minimize the risk of overwhelming
servers when performing Internet-wide scans, we followed
the best practices outlined in prior work in Internet scanning
and widescale censorship measurement [26, 60]. We set up a
dedicated webpage, along with a reverse DNS to it, on port 80
of our scanning host at CU Boulder. The webpage explains
what data our scanning collects, and offers ways to opt out of
future scans. During our entire experiment period, we received
and honored seven removal requests, which is typical based
on past experiences scanning the Internet [25, §5.3] [26, §5.1].
Our follow-up scans to these servers were low-bandwidth: we
sent less than 100 bytes for each request, and each server only
performed one connection at a time to avoid overwhelming
their network or connection pool resources.

The use of vantage points. Active censorship measurement
from within censored countries requires additional considera-
tions and prudent evaluation. We first explored the possibility
of performing the measurement remotely but confirmed that
this censorship could not be triggered from outside of China.
While it may be low risk to have sensitive queries observed
by the censor, we follow similar standards discussed in prior
work to limit the number of these sensitive queries we send [5].
In particular, we only send queries on port 80 to servers that
are listening on that port, and made no concurrent connections
to the same server to avoid overwhelming server operations.

Our research team consulted experts with a deep under-
standing of the nature and legal concerns of Chinese cen-
sorship, who helped us make informed decisions on which
VPS providers to use and how to use them. We selected two
large-scale VPS providers run by well-known commercial
companies in order to avoid any potential legal risks to indi-
viduals. We registered our VPSes with the accurate identity
and contact information of one of our researchers who is
neither a citizen of nor resides in China. We received no com-
plaints from the providers throughout our research. As done
in prior work [5], we do not inform these large VPS providers
of the experiments ahead of time, to avoid potential experi-
ment bias (e.g. interference in results) or placing potential
legal obligations or burdens on the VPS providers.

We manage the risk of potentially getting any server
blocked by the GFW temporarily or in the long term. For
all hosts we controlled in this study, we assigned dedicated
IP addresses to them to avoid blocking shared IP addresses.
In addition, we rented our non-censoring network hosts from
a VPS provider that permits censorship circumvention usage
and even offers automatic installation of circumvention tools.
Similar to the findings in prior work on residual censorship
in China [13, 14, 17, 63], we tested using our own servers and
confirmed that the GFW never blocked any of our machines’
IP addresses for more than 180 seconds, and the blocking only
affected traffic from our clients to the servers, without interfer-
ing with traffic from others’. Knowing that our servers were
used for five months but never experienced any long-term
blocking, we proceeded to perform our large-scale scans.

10 Conclusion

In this work, we exposed and studied China’s latest censorship
system that dynamically blocks fully encrypted traffic in real
time. This powerful new form of censorship has affected many
mainstream circumvention tools partially or in full, including
Shadowsocks, Outline, VMess, Obfs4, Lantern, Phiphon, and
Conjure. We conducted extensive measurements to infer vari-
ous properties about the GFW’s traffic analysis algorithm and
evaluated its comprehensiveness and false positives against
real-world traffic. We use our knowledge of this new cen-
sorship system to derive effective circumvention strategies.
We responsibly disclosed our findings and suggestions to the
developers of different anti-censorship tools, helping millions
of users successfully evade this new form of blocking.

Acknowledgments

We thank our shepherd and other anonymous reviewers for
their valuable comments and feedback. We also thank the
brave users in China for immediately reporting the blocking
incidents to us. We are grateful to Benjamin M. Schwartz,
zonyitoo, nekohasekai, database64128, AkinoKaede, Max Lv,
Mygod, DuckSoft, and many other developers from the anti-
censorship community for their prompt patches, assistance,
and discussions. We express our sincere appreciation to Out-
line developer, Vinicius Fortuna, at Jigsaw for offering in-
sightful suggestions and assisting us in reaching out to the
community. We thank Lantern developers Adam Fisk and Ox
Cart for sharing the deployment experience of their tool in
Iran. We also thank Milad Nasr for his informative input. We
appreciate klzgrad sharing thoughtful comments on an earlier
draft of the paper. We are also deeply grateful to David Fifield
for providing a proof-of-concept patch against obfs4, con-
tributing to the discussions, providing constructive feedback
and suggestions on an earlier draft of the paper, and offering
guidance and support throughout the entire study.

This work was supported in part by NSF grants CNS-
1943240, CNS-1953786, CNS-1954063 and CNS-2145783,
by the Young Faculty Award program of the Defense Ad-
vanced Research Projects Agency (DARPA) under the grant
DARPA-RA-21-03-09-YFA9-FP-003, and by DARPA under
Agreement No. HR00112190125. The views, opinions, and/or
findings expressed are those of the authors and should not be
interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. Approved
for public release; distribution is unlimited.

Availablity

To maintain reproducibility and encourage future research,
we released our source code and data: https://gfw.report/
publications/usenixsecurity23/en.

2666 32nd USENIX Security Symposium USENIX Association

https://gfw.report/publications/usenixsecurity23/en
https://gfw.report/publications/usenixsecurity23/en

References

[1] 19th central committee of the chinese communist
party. https://en.wikipedia.org/wiki/19th_Central_
Committee_of_the_Chinese_Communist_Party.

[2] Abuseipdb. https://www.abuseipdb.com/.

[3] Ip2location lite data. http://www.ip2location.com/.

[4] Sixth plenary session of the 19th cpc central committee.
https://zh.wikipedia.org/zh-cn/%E4%B8%AD%E5%
9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%
E7%AC%AC%E5%8D%81%E4%B9%9D%E5%
B1%8A%E4%B8%AD%E5%A4%AE%E5%A7%
94%E5%91%98%E4%BC%9A%E7%AC%AC%E5%
85%AD%E6%AC%A1%E5%85%A8%E4%BD%
93%E4%BC%9A%E8%AE%AE.

[5] Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr.
How China detects and blocks Shadowsocks. In In-
ternet Measurement Conference. ACM, 2020. https:
//censorbib.nymity.ch/pdf/Alice2020a.pdf.

[6] Shadowsocks android developers. Shadowsocks-
android. https://github.com/shadowsocks/
shadowsocks-android.

[7] Yawning Angel et al. Obfs4 specification. https://gitlab.
com/yawning/obfs4/blob/master/doc/obfs4-spec.txt.

[8] Anonymous and Amonymous. Sharing a modified
Shadowsocks as well as our thoughts on the cat-
and-mouse game, October 2022. https://github.com/
net4people/bbs/issues/136.

[9] Anonymous, Anonymous, Anonymous, David Fifield,
and Amir Houmansadr. A practical guide to defend
against the GFW’s latest active probing, January 2021.
https://github.com/net4people/bbs/issues/58.

[10] Anonymous, Vinicius Fortuna, David Fifield, Xiaokang
Wang, Mygod, moranno, et al. Properly config-
ured shadowsocks servers reportedly blocked in china,
November 2021. https://github.com/net4people/bbs/
issues/69#issuecomment-962666385.

[11] Stefan Axelsson. The base-rate fallacy and its implica-
tions for the difficulty of intrusion detection. In Pro-
ceedings of the 6th ACM Conference on Computer and
Communications Security, pages 1–7, 1999. https://
www.cse.psu.edu/~trj1/cse543-f16/docs/Axelsson.pdf.

[12] Kevin Bock. Iran: A new model for censorship, March
2020. https://geneva.cs.umd.edu/posts/iran-whitelister/.

[13] Kevin Bock, Pranav Bharadwaj, Jasraj Singh, and Dave
Levin. Your censor is my censor: Weaponizing censor-
ship infrastructure for availability attacks. In Workshop

on Offensive Technologies. IEEE, 2021. http://www.cs.
umd.edu/~dml/papers/weaponizing_woot21.pdf.

[14] Kevin Bock, iyouport, Anonymous, Louis-Henri Merino,
David Fifield, Amir Houmansadr, and Dave Levin. Ex-
posing and circumventing China’s censorship of ESNI,
August 2020. https://github.com/net4people/bbs/issues/
43#issuecomment-673322409.

[15] Olivier Bonaventure. MPTLS : Making TLS and
Multipath TCP stronger together. Internet-Draft draft-
bonaventure-mptcp-tls-00, Internet Engineering Task
Force, October 2014. https://datatracker.ietf.org/doc/
draft-bonaventure-mptcp-tls/00/.

[16] brl. Obfuscated OpenSSH. https://github.com/brl/
obfuscated-openssh.

[17] Zimo Chai, Amirhossein Ghafari, and Amir
Houmansadr. On the importance of encrypted-
SNI (ESNI) to censorship circumvention. In Free and
Open Communications on the Internet. USENIX, 2019.
https://www.usenix.org/system/files/foci19-paper_
chai_update.pdf.

[18] database64128. taint: add unsafe stream
prefix, October 2022. https://github.com/
shadowsocks/shadowsocks-org/issues/204#
issuecomment-1266710067.

[19] database64128, zonyitoo, Xiaokang Wang, and neko-
hasekai. Shadowsocks 2022 Edition: Secure L4 Tun-
nel with Symmetric Encryption, October 2022. https:
//github.com/net4people/bbs/issues/58.

[20] Lantern developers. Lantern. https://github.com/
getlantern.

[21] Psiphon3 developers. Psiphon3. https://psiphon.ca/.

[22] Shadowsocks developers. Shadowsocks aead cihpher
specification. https://shadowsocks.org/guide/aead.html.

[23] VMess developers. Vmess. https://www.v2fly.org/en_
US/developer/protocols/vmess.html.

[24] Roger Dingledine. Obfsproxy: the next step in
the censorship arms race. https://blog.torproject.
org/obfsproxy-next-step-censorship-arms-race, Febru-
ary 2012.

[25] Zakir Durumeric, Michael Bailey, and J. Alex
Halderman. An Internet-Wide view of Internet-
Wide scanning. In 23rd USENIX Security Sym-
posium (USENIX Security 14), pages 65–78, San
Diego, CA, August 2014. USENIX Association.
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/durumeric.

USENIX Association 32nd USENIX Security Symposium 2667

https://en.wikipedia.org/wiki/19th_Central_Committee_of_the_Chinese_Communist_Party
https://en.wikipedia.org/wiki/19th_Central_Committee_of_the_Chinese_Communist_Party
https://www.abuseipdb.com/
http://www.ip2location.com/
https://zh.wikipedia.org/zh-cn/%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AC%AC%E5%8D%81%E4%B9%9D%E5%B1%8A%E4%B8%AD%E5%A4%AE%E5%A7%94%E5%91%98%E4%BC%9A%E7%AC%AC%E5%85%AD%E6%AC%A1%E5%85%A8%E4%BD%93%E4%BC%9A%E8%AE%AE
https://zh.wikipedia.org/zh-cn/%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AC%AC%E5%8D%81%E4%B9%9D%E5%B1%8A%E4%B8%AD%E5%A4%AE%E5%A7%94%E5%91%98%E4%BC%9A%E7%AC%AC%E5%85%AD%E6%AC%A1%E5%85%A8%E4%BD%93%E4%BC%9A%E8%AE%AE
https://zh.wikipedia.org/zh-cn/%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AC%AC%E5%8D%81%E4%B9%9D%E5%B1%8A%E4%B8%AD%E5%A4%AE%E5%A7%94%E5%91%98%E4%BC%9A%E7%AC%AC%E5%85%AD%E6%AC%A1%E5%85%A8%E4%BD%93%E4%BC%9A%E8%AE%AE
https://zh.wikipedia.org/zh-cn/%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AC%AC%E5%8D%81%E4%B9%9D%E5%B1%8A%E4%B8%AD%E5%A4%AE%E5%A7%94%E5%91%98%E4%BC%9A%E7%AC%AC%E5%85%AD%E6%AC%A1%E5%85%A8%E4%BD%93%E4%BC%9A%E8%AE%AE
https://zh.wikipedia.org/zh-cn/%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AC%AC%E5%8D%81%E4%B9%9D%E5%B1%8A%E4%B8%AD%E5%A4%AE%E5%A7%94%E5%91%98%E4%BC%9A%E7%AC%AC%E5%85%AD%E6%AC%A1%E5%85%A8%E4%BD%93%E4%BC%9A%E8%AE%AE
https://zh.wikipedia.org/zh-cn/%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AC%AC%E5%8D%81%E4%B9%9D%E5%B1%8A%E4%B8%AD%E5%A4%AE%E5%A7%94%E5%91%98%E4%BC%9A%E7%AC%AC%E5%85%AD%E6%AC%A1%E5%85%A8%E4%BD%93%E4%BC%9A%E8%AE%AE
https://zh.wikipedia.org/zh-cn/%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AC%AC%E5%8D%81%E4%B9%9D%E5%B1%8A%E4%B8%AD%E5%A4%AE%E5%A7%94%E5%91%98%E4%BC%9A%E7%AC%AC%E5%85%AD%E6%AC%A1%E5%85%A8%E4%BD%93%E4%BC%9A%E8%AE%AE
https://censorbib.nymity.ch/pdf/Alice2020a.pdf
https://censorbib.nymity.ch/pdf/Alice2020a.pdf
https://github.com/shadowsocks/shadowsocks-android
https://github.com/shadowsocks/shadowsocks-android
https://gitlab.com/yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://gitlab.com/yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/net4people/bbs/issues/136
https://github.com/net4people/bbs/issues/136
https://github.com/net4people/bbs/issues/58
https://github.com/net4people/bbs/issues/69#issuecomment-962666385
https://github.com/net4people/bbs/issues/69#issuecomment-962666385
https://www.cse.psu.edu/~trj1/cse543-f16/docs/Axelsson.pdf
https://www.cse.psu.edu/~trj1/cse543-f16/docs/Axelsson.pdf
https://geneva.cs.umd.edu/posts/iran-whitelister/
http://www.cs.umd.edu/~dml/papers/weaponizing_woot21.pdf
http://www.cs.umd.edu/~dml/papers/weaponizing_woot21.pdf
https://github.com/net4people/bbs/issues/43#issuecomment-673322409
https://github.com/net4people/bbs/issues/43#issuecomment-673322409
https://datatracker.ietf.org/doc/draft-bonaventure-mptcp-tls/00/
https://datatracker.ietf.org/doc/draft-bonaventure-mptcp-tls/00/
https://github.com/brl/obfuscated-openssh
https://github.com/brl/obfuscated-openssh
https://www.usenix.org/system/files/foci19-paper_chai_update.pdf
https://www.usenix.org/system/files/foci19-paper_chai_update.pdf
https://github.com/shadowsocks/shadowsocks-org/issues/204#issuecomment-1266710067
https://github.com/shadowsocks/shadowsocks-org/issues/204#issuecomment-1266710067
https://github.com/shadowsocks/shadowsocks-org/issues/204#issuecomment-1266710067
https://github.com/net4people/bbs/issues/58
https://github.com/net4people/bbs/issues/58
https://github.com/getlantern
https://github.com/getlantern
https://psiphon.ca/
https://shadowsocks.org/guide/aead.html
https://www.v2fly.org/en_US/developer/protocols/vmess.html
https://www.v2fly.org/en_US/developer/protocols/vmess.html
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumeric
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumeric

[26] Zakir Durumeric, Eric Wustrow, and J. Alex Hal-
derman. ZMap: Fast internet-wide scanning and
its security applications. In 22nd USENIX Se-
curity Symposium (USENIX Security 13), pages
605–620, Washington, D.C., August 2013. USENIX
Association. https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/paper/durumeric.

[27] Roya Ensafi, David Fifield, Philipp Winter, Nick Feam-
ster, Nicholas Weaver, and Vern Paxson. Examining
how the Great Firewall discovers hidden circumven-
tion servers. In Internet Measurement Conference.
ACM, 2015. http://conferences2.sigcomm.org/imc/
2015/papers/p445.pdf.

[28] David Fifield. Cyberoam firewall blocks meek by TLS
signature. https://groups.google.com/forum/#!topic/
traffic-obf/BpFSCVgi5rs/, 2016.

[29] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,
and Vern Paxson. Blocking-resistant communication
through domain fronting. Privacy Enhancing Technolo-
gies, 2015(2), 2015. https://www.icir.org/vern/papers/
meek-PETS-2015.pdf.

[30] David Fifield and Lynn Tsai. Censors’ delay
in blocking circumvention proxies. In Free and
Open Communications on the Internet. USENIX,
2016. https://www.usenix.org/system/files/conference/
foci16/foci16-paper-fifield.pdf.

[31] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and
C. Paasch. TCP Extensions for Multipath Operation
with Multiple Addresses. RFC 8684, RFC Editor, March
2020. https://tools.ietf.org/html/rfc8684.

[32] Vinicius Fortuna. Outline changes since the prelinimary
report, August 2020. https://github.com/net4people/bbs/
issues/22#issuecomment-670781627.

[33] Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex
Halderman, Nikita Borisov, and Eric Wustrow. Conjure:
Summoning proxies from unused address space. In
Computer and Communications Security. ACM, 2019.
https://jhalderm.com/pub/papers/conjure-ccs19.pdf.

[34] Sergey Frolov, Jack Wampler, and Eric Wustrow. De-
tecting probe-resistant proxies. In Network and
Distributed System Security. The Internet Society,
2020. https://www.ndss-symposium.org/wp-content/
uploads/2020/02/23087.pdf.

[35] Sergey Frolov and Eric Wustrow. The use of TLS in
censorship circumvention. In Network and Distributed
System Security. The Internet Society, 2019. https://
tlsfingerprint.io/static/frolov2019.pdf.

[36] Sergey Frolov and Eric Wustrow. HTTPT: A probe-
resistant proxy. In Free and Open Communications on
the Internet. USENIX, 2020. https://www.usenix.org/
system/files/foci20-paper-frolov.pdf.

[37] GFW Report. 有证据表明中国的防火长城
已经对任何看似随机的流量进行动态的封锁,
November 2021. https://twitter.com/gfw_report/status/
1460800856086003717.

[38] GFW Report. The GFW has now been able to dynam-
ically block any seemingly random traffic in real time,
November 2021. https://twitter.com/gfw_report/status/
1460796633571069955.

[39] Amir Houmansadr, Chad Brubaker, and Vitaly
Shmatikov. The parrot is dead: Observing un-
observable network communications. In Sym-
posium on Security & Privacy. IEEE, 2013.
https://people.cs.umass.edu/~amir/papers/parrot.pdf.

[40] isofew. sssniff, 2017. https://github.com/isofew/sssniff.

[41] Liz Izhikevich, Renata Teixeira, and Zakir Durumeric.
{LZR}: Identifying unexpected internet services. In
30th USENIX Security Symposium (USENIX Security
21), pages 3111–3128, 2021. https://www.usenix.org/
conference/usenixsecurity21/presentation/izhikevich.

[42] Jigsaw. Outline. https://getoutline.org/.

[43] Jigsaw. Outline v1.1.0. https://github.com/Jigsaw-Code/
outline-ss-server/releases/tag/v1.1.0.

[44] George Kadianakis. GFW probes based on tor’s ssl
cipher list, 2011. https://gitlab.torproject.org/legacy/
trac/-/issues/4744.

[45] klzgrad. NaïveProxy. https://github.com/klzgrad/
naiveproxy.

[46] Di Liang and Yongzhong He. Obfs4 traffic identifica-
tion based on multiple-feature fusion. In 2020 IEEE
International Conference on Power, Intelligent Com-
puting and Systems (ICPICS), pages 323–327, 2020.
https://ieeexplore.ieee.org/document/9202018.

[47] madeye. sssniff, 2017. https://github.com/madeye/
sssniff.

[48] nekohasekai. Add shadowsocks reducedIv-
HeadEntropy option, January 2022. https:
//github.com/SagerNet/v2ray-core/commit/
27fad5daaa1c33ed1c928d6c447df983a88d14a3.

[49] Leif Nixon. Some observations on the Great Firewall of
China, November 2011. https://www.nsc.liu.se/~nixon/
sshprobes.html.

2668 32nd USENIX Security Symposium USENIX Association

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
http://conferences2.sigcomm.org/imc/2015/papers/p445.pdf
http://conferences2.sigcomm.org/imc/2015/papers/p445.pdf
https://groups.google.com/forum/#!topic/traffic-obf/BpFSCVgi5rs/
https://groups.google.com/forum/#!topic/traffic-obf/BpFSCVgi5rs/
https://www.icir.org/vern/papers/meek-PETS-2015.pdf
https://www.icir.org/vern/papers/meek-PETS-2015.pdf
https://www.usenix.org/system/files/conference/foci16/foci16-paper-fifield.pdf
https://www.usenix.org/system/files/conference/foci16/foci16-paper-fifield.pdf
https://tools.ietf.org/html/rfc8684
https://github.com/net4people/bbs/issues/22#issuecomment-670781627
https://github.com/net4people/bbs/issues/22#issuecomment-670781627
https://jhalderm.com/pub/papers/conjure-ccs19.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/23087.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/23087.pdf
https://tlsfingerprint.io/static/frolov2019.pdf
https://tlsfingerprint.io/static/frolov2019.pdf
https://www.usenix.org/system/files/foci20-paper-frolov.pdf
https://www.usenix.org/system/files/foci20-paper-frolov.pdf
https://twitter.com/gfw_report/status/1460800856086003717
https://twitter.com/gfw_report/status/1460800856086003717
https://twitter.com/gfw_report/status/1460796633571069955
https://twitter.com/gfw_report/status/1460796633571069955
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://github.com/isofew/sssniff
https://www.usenix.org/conference/usenixsecurity21/presentation/izhikevich
https://www.usenix.org/conference/usenixsecurity21/presentation/izhikevich
https://getoutline.org/
https://github.com/Jigsaw-Code/outline-ss-server/releases/tag/v1.1.0
https://github.com/Jigsaw-Code/outline-ss-server/releases/tag/v1.1.0
https://gitlab.torproject.org/legacy/trac/-/issues/4744
https://gitlab.torproject.org/legacy/trac/-/issues/4744
https://github.com/klzgrad/naiveproxy
https://github.com/klzgrad/naiveproxy
https://ieeexplore.ieee.org/document/9202018
https://github.com/madeye/sssniff
https://github.com/madeye/sssniff
https://github.com/SagerNet/v2ray-core/commit/27fad5daaa1c33ed1c928d6c447df983a88d14a3
https://github.com/SagerNet/v2ray-core/commit/27fad5daaa1c33ed1c928d6c447df983a88d14a3
https://github.com/SagerNet/v2ray-core/commit/27fad5daaa1c33ed1c928d6c447df983a88d14a3
https://www.nsc.liu.se/~nixon/sshprobes.html
https://www.nsc.liu.se/~nixon/sshprobes.html

[50] ntop. PF_RING: High-speed packet capture, fil-
tering and analysis. https://www.ntop.org/products/
packet-capture/pf_ring/.

[51] pyasn developers. pyasn. https://github.com/
hadiasghari/pyasn.

[52] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018. https:
//datatracker.ietf.org/doc/html/rfc8446#section-4.1.2.

[53] Eric Rescorla and Tim Dierks. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246, Au-
gust 2008. https://datatracker.ietf.org/doc/html/rfc5246#
appendix-E.

[54] Shadowsocks rust developers. Shadowsocks-rust. https:
//github.com/shadowsocks/shadowsocks-rust.

[55] Runa Sandvik. Ethiopia introduces deep
packet inspection. https://blog.torproject.org/
ethiopia-introduces-deep-packet-inspection, 2012.

[56] Benjamin M. Schwartz and Vinicius Fortuna. feat: salt
prefix support, November 2022. https://github.com/
Jigsaw-Code/outline-client/pull/1454.

[57] Michael Carl Tschantz, Sadia Afroz, Anonymous, and
Vern Paxson. SoK: Towards grounding censorship cir-
cumvention in empiricism. In Symposium on Security
& Privacy. IEEE, 2016. https://www.eecs.berkeley.edu/
~sa499/papers/oakland2016.pdf.

[58] Eric Tung. Geph4 sosistab - an obfuscated datagram
transport for horrible networks. https://github.com/
geph-official/sosistab.

[59] V2Ray developers. V2Ray. https://github.com/v2fly/
v2ray-core.

[60] Benjamin VanderSloot, Allison McDonald, Will Scott,
J. Alex Halderman, and Roya Ensafi. Quack: Scal-
able remote measurement of application-layer censor-
ship. In USENIX Security Symposium. USENIX,
2018. https://www.usenix.org/system/files/conference/
usenixsecurity18/sec18-vandersloot.pdf.

[61] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas
Ristenpart, and Thomas Shrimpton. Seeing through
network-protocol obfuscation. In Computer and Com-
munications Security. ACM, 2015. http://pages.cs.wisc.
edu/~liangw/pub/ccsfp653-wangA.pdf.

[62] Xiaokang Wang. Shadowsockets reduecd IV head en-
tropy experiment, January 2022. https://github.com/
v2fly/v2ray-core/pull/1552.

[63] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song,
and Srikanth V. Krishnamurthy. Your state is not mine:
A closer look at evading stateful Internet censorship. In

Internet Measurement Conference. ACM, 2017. http:
//www.cs.ucr.edu/~krish/imc17.pdf.

[64] Tim Wilde. Knock knock knockin’ on bridges’
doors, 2012. https://blog.torproject.org/blog/
knock-knock-knockin-bridges-doors.

[65] WinkVPN, GibMeMyPacket, wkrp, et al.
Shadowsocks blocked in Iran?, October 2022.
https://github.com/net4people/bbs/issues/142#
issuecomment-1289393093.

[66] Philipp Winter. GFW actively probes obfs2bridges,
March 2013. https://bugs.torproject.org/8591.

[67] Philipp Winter and Stefan Lindskog. How the Great
Firewall of China is blocking Tor. In Free and
Open Communications on the Internet. USENIX,
2012. https://www.usenix.org/system/files/conference/
foci12/foci12-final2.pdf.

[68] Philipp Winter, Tobias Pulls, and Juergen Fuss. Scram-
bleSuit: A polymorphic network protocol to circumvent
censorship. In Workshop on Privacy in the Electronic
Society. ACM, 2013. https://censorbib.nymity.ch/pdf/
Winter2013b.pdf.

[69] xspeed, Vinicius Fortuna, et al. I think
SS is detected by GFW, November 2021.
https://github.com/shadowsocks/shadowsocks-libev/
issues/2860#issuecomment-974250511.

[70] He Yongzhong, Hu Liping, and Gao Rui. Detection of
Tor traffic hiding under obfs4 protocol based on two-
level filtering. In 2019 2nd International Conference on
Data Intelligence and Security (ICDIS), pages 195–200,
2019. https://ieeexplore.ieee.org/document/8855280.

[71] zonyitoo. Shadowsocks-rust v1.8.5. https://github.com/
shadowsocks/shadowsocks-rust/releases/tag/v1.8.5.

[72] zonyitoo. Security: First 6 bytes of payload
should be printable characters, January 2022. https:
//github.com/shadowsocks/shadowsocks-rust/commit/
53aab484f8daba6f5cee6896b034af943cc3d406.

A Other Stopgap Circumvention Strategies

Use a non-TCP transport protocol. As introduced in Sec-
tion 4.4, UDP traffic does not trigger blocking. Currently, one
can circumvent censorship by simply switching to (or tunnel-
ing over) UDP or QUIC. This is merely a stopgap measure,
as the censor can enable their censorship for UDP.

Base64-encode the first packet. Recall that the GFW does
not censor connections if more than 50% of the first packet’s

USENIX Association 32nd USENIX Security Symposium 2669

https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/
https://github.com/hadiasghari/pyasn
https://github.com/hadiasghari/pyasn
https://datatracker.ietf.org/doc/html/rfc8446#section-4.1.2
https://datatracker.ietf.org/doc/html/rfc8446#section-4.1.2
https://datatracker.ietf.org/doc/html/rfc5246#appendix-E
https://datatracker.ietf.org/doc/html/rfc5246#appendix-E
https://github.com/shadowsocks/shadowsocks-rust
https://github.com/shadowsocks/shadowsocks-rust
https://blog.torproject.org/ethiopia-introduces-deep-packet-inspection
https://blog.torproject.org/ethiopia-introduces-deep-packet-inspection
https://github.com/Jigsaw-Code/outline-client/pull/1454
https://github.com/Jigsaw-Code/outline-client/pull/1454
https://www.eecs.berkeley.edu/~sa499/papers/oakland2016.pdf
https://www.eecs.berkeley.edu/~sa499/papers/oakland2016.pdf
https://github.com/geph-official/sosistab
https://github.com/geph-official/sosistab
https://github.com/v2fly/v2ray-core
https://github.com/v2fly/v2ray-core
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-vandersloot.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-vandersloot.pdf
http://pages.cs.wisc.edu/~liangw/pub/ccsfp653-wangA.pdf
http://pages.cs.wisc.edu/~liangw/pub/ccsfp653-wangA.pdf
https://github.com/v2fly/v2ray-core/pull/1552
https://github.com/v2fly/v2ray-core/pull/1552
http://www.cs.ucr.edu/~krish/imc17.pdf
http://www.cs.ucr.edu/~krish/imc17.pdf
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://github.com/net4people/bbs/issues/142#issuecomment-1289393093
https://github.com/net4people/bbs/issues/142#issuecomment-1289393093
https://bugs.torproject.org/8591
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://censorbib.nymity.ch/pdf/Winter2013b.pdf
https://censorbib.nymity.ch/pdf/Winter2013b.pdf
https://github.com/shadowsocks/shadowsocks-libev/issues/2860#issuecomment-974250511
https://github.com/shadowsocks/shadowsocks-libev/issues/2860#issuecomment-974250511
https://ieeexplore.ieee.org/document/8855280
https://github.com/shadowsocks/shadowsocks-rust/releases/tag/v1.8.5
https://github.com/shadowsocks/shadowsocks-rust/releases/tag/v1.8.5
https://github.com/shadowsocks/shadowsocks-rust/commit/53aab484f8daba6f5cee6896b034af943cc3d406
https://github.com/shadowsocks/shadowsocks-rust/commit/53aab484f8daba6f5cee6896b034af943cc3d406
https://github.com/shadowsocks/shadowsocks-rust/commit/53aab484f8daba6f5cee6896b034af943cc3d406

bytes are printable ASCII. One straightforward way to sat-
isfy this property would be to simply base64-encode all of
the encrypted traffic. This, too, is only a stopgap solution;
base64-encoded data is easy to detect, and the censor could
simply base64-decode and then apply its rules. Although it is
effective against the GFW today, we do not consider it as a
long-term solution.

More than 20 contiguous bytes of printable ASCII. The
GFW exempts connections if the first packet has more than
20 contiguous bytes of printable ASCII. One way to satisfy
this is to base64-encode only a small portion of the fully-
encrypted packet—or even just insert at least 21 printable
ASCII characters into the ciphertext. While we believe this
would be more difficult to detect than base64-encoded the
entire packet, it also strikes us as a short-term stopgap.

All of the above countermeasures can be implemented
on the client-side only, without requiring support from the
proxy server. This is possible by applying an idea from prior
work [12]: sending a packet such as the ones described above
that gets processed by the censor but not by the proxy. For
instance, prior to sending the actual first packet of the con-
nection, the client could send a packet that satisfies one of the
above rules but that has a broken checksum (which the censor
will not check, but the proxy will) or a limited TTL (large
enough to reach the censor but not the destination). While
these techniques were first verified against Iran’s Protocol Fil-
ter, we have verified that these same approaches work against
the GFW’s blocking of fully encrypted traffic. Although this
provides an encouragingly easy path for deployment, it alone
does not elevate these stopgap solutions to longer-term ones.

2670 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Traffic Obfuscation Strategies
	Active Probing Attacks and Defenses

	Methodology
	Characterizing the New Censorship System
	Entropy Exemption (Ex1)
	ASCII Characters Exemption (Ex2-4)
	Common Protocols Exemption (Ex5)
	How the GFW Disrupts Connections
	How the GFW Reassembles Flows

	Relation with the Active Probing System
	Understanding the Blocking Strategies
	Internet Scanning Experiment
	Not All Subnets/ASes are Affected Equally
	Characterizing Probabilistic Blocking

	Evaluating the GFW's Detection Rules
	Traffic Analysis Experiment
	Experiment Results and Analysis

	Circumvention Strategies
	Customizable Payload Prefixes
	Altering Popcount
	Responsible Disclosure

	Ethics
	Conclusion
	Other Stopgap Circumvention Strategies

