
Active network vision and reality: 
lessons from a capsule-based system 

David Wetherall 
Department of Computer Science and Engineering 

University of Washington 
( djw @ cs. washington, edu) 

Abstract 

Although active networks have generated much debate in the 
research community, on the whole there has been little hard 
evidence to inform this debate. This paper aims to redress 
the situation by reporting what we have learned by design- 
ing, implementing and using the ANTS active network toolkit 
over the past two years. At this early stage, active networks 
remain an open research area. However, we believe that we 
have made substantial progress towards providing a more 
flexible network layer while at the same time addressing the 
performance and security concerns raised by the presence 
of  mobile code in the network. In this paper, we argue our 
progress towards the original vision and the difficulties that 
we have not yet resolved in three areas that characterize a 
"pure" active network: the capsule model of  programma- 
bility; the accessibility of that model to all users; and the 
applications that can be constructed in practice. 

1 Introduction 

Active networks are a novel approach to network architecture 
in which customized programs are executed within the net- 
work. They were first described in [41], where the authors 
postulated that this approach would provide two key bene- 
fits: it would enable a range of new applications that lever- 
aged computation within the network; and it would acceler- 
ate the pace of innovation by decoupling services from the 
underlying infrastructure. Active networks have generated 
much interest because of their appeal as a means of creating 
new Internet services. They have also resulted in at least as 
much controversy because of serious performance and secu- 
rity concerns raised by the presence of untrusted code within 
the network. 

Can active networks deliver their claimed benefits in 
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terms of new and novel services, while at the same time 
keeping the network efficient and secure? At least eight 
active network prototypes have been developed in addi- 
tion to our own to study this question in one form or an- 
other [1, 11, 43, 48, 2, 16, 30, 39]. Hence the concept of 
active networking (if not its actual deployment) is now "old 
hat"  However, very little evidence has been presented to 
support or refute the original vision for active networks to 
date. 

In this paper, we reconsider the vision for active net- 
works in light of our experience designing, implementing 
and using the ANTS toolkit [46] over the past two years; 
ANTS is well-suited to this purpose because it is based on 
an aggressive "capsule" design that adds extensibility at the 
IP packet level. We unabashedly present a mix of fact and 
opinion, experimental results and qualitative analysis, that 
reports on the progress we have made reconciling network 
flexibility with performance and security. Our findings are 
based on having implemented two large active network ap- 
plications and numerous smaller examples on top of ANTS, 
and on a comparison of the properties of ANTS with the 
Internet. Additionally, ANTS is widely used within the re- 
search community (having been publicly available since late 
'97) and has resulted in considerable design feedback. 

To highlight what we have learned, we contrast our find- 
ings with the vision originally stated in [41] in three areas 
that characterize a "pure" active network: the capsule model 
of programmability; the accessibility of that model to all 
users; and the applications that can be constructed in prac- 
tice. Specifically, we present the following findings in this 
paper: 

Capsules. Profile measurements suggest that cap- 
sules can be a competitive forwarding mechanism wherever 
software-based routers are viable; this is despite the fact 
that our prototype is limited to an unimpressive 10 Mbps, in 
large part due to being implemented in Java. To implement 
capsules efficiently, we have replaced a naive code carrying 
scheme with one :in which code is carried by reference and so 
depends, to a larger extent than suggested in [41], on demand 
loading and traffic patterns for which caching is effective. 
We have also found it necessary to revise our architecture to 
accommodate heterogeneous types of nodes, and in partic- 
ular to be compatible with nodes that are not active. As a 
result, routers that would not otherwise perform forwarding 
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in software are not slowed by capsule processing. 
Accessibility. We have partly succeeded in allowing each 

user the freedom to control the handling of their packets 
within the network. We are able to isolate the code and 
state of different services to guarantee their correctness to 
the same degree as do today's static and trusted protocols. 
This is possible without restrictions on who can program 
the network, despite the fact that active network code is 
mobile and untrusted. However, it remains an open prob- 
lem to prevent misbehaving programs from monopolizing 
resources across a group of nodes. This is analogous to the 
way that the current Internet does not prevent misbehaving 
users from monopolizing bandwidth. Both problems require 
further network mechanisms to be developed (see, for exam- 
ple, [8]), though the active network version of the problem is 
more complicated; we describe how it differs. To deal with 
this problem in the immediate future, we have fallen back on 
certification by a trusted authority, a measure not in keeping 
with [41] in that it will slow the rate of change. Nonetheless, 
we argue that the result is a system that can still evolve much 
more quickly than the Internet. 

Applications. We have found capsules most useful for 
experimenting with and deploying new services that are 
routing variants, such as multicast, that make use of network 
layer state. Capsule code tends to be "glue" that acts as a 
flexible means for composing the capabilities made avail- 
able by active nodes, rather than application-specific com- 
putation that is migrated to within the network as suggested 
in [41 ]. We expect that there will be relatively few active ser- 
vices, but believe that the case for using active networks is 
still compelling because of the great difficulties introducing, 
changing and experimenting with new services in the Inter- 
net today. In particular, the automatic code deployment of 
capsules provides a fundamentally new and valuable model 
for systematic change across wide-area network paths. 

In sum, we believe that we have made substantial 
progress towards building the kind of active network envi- 
sioned in [41]. We find it feasible to add a degree of pro- 
grammability across the network layer that provides clearly 
useful new flexibility. At the same time, the mechanisms we 
have developed and the restrictions we have adopted go a 
long way towards resolving performance and security con- 
cerns. On the other hand, it is clear that greater application 
experience is needed and open issues remain in areas such 
as resource management. We observe that programmability 
is rapidly being incorporated into network elements at es- 
sentially all locations where it is viable. Without further re- 
search this programmability will by default take the form of 
piecemeal solutions that allow individual network elements 
to be upgraded, but no more than that. If  we are not careful, 
the network may well be "activated" without providing the 
benefit of a systematic means of upgrading services across 
the Internet. 

The rest of this paper is organized as follows. We begin 
with background on active network research, and then sum- 
marize the essential features of ANTS needed to understand 
our results. In the main sections, we present our findings for 
each of the three topic areas. Finally, we discuss some more 
speculative observations in terms of network architecture. 

2 Background 

There are many approaches by which programmability can 
be deeply embedded into the network infrastructure, at either 
routers or individual packets, in the fashion of active net- 
works. We briefly consider three styles to help place ANTS 
in context. 

Some active network systems provide extensibility to 
individual devices, increasing their flexibility well beyond 
the level currently supported by router configuration mech- 
anisms, such as Cisco's IOS. Two examples are the active 
bridge [1] and router plugins [1 i]. Such systems are well- 
suited to the task of imposing policy or functionality at a par- 
ticular network location in the manner of a firewall or other 
edge boundary device. As such, they are typically meant for 
use by network administrators or other privileged users. 

A second style of  system provides programmability 
across multiple nodes for control tasks rather than new data 
transfer services. For example, BBN's SmartPackets [39] 
provides a programming environment that caters to manage- 
ment tasks; ISI's active signaling and the Tempest [43] target 
call and virtual network setup; and ACTIVE IP [47] supports 
measurement and discovery tasks. Netscript [48] is an ex- 
ample of a system that combines both of these styles by al- 
lowing management channels to program new data transfer 
services. 

These two styles of system essentially restrict either 
where programs can be run or who can cause them to be 
run. Doing so limits their applicability, but is useful in prac- 
tice precisely because it makes the design problem more 
tractable by specializing it to a particular domain. Single 
network element schemes, for example, are not intended to 
introduce services that are spread over the wide area and for 
that reason do not have to coordinate code distribution across 
an entire network. Similarly, control tasks are not executed 
at the granularity of packet forwarding and so have less strin- 
gent performance requirements. 

In contrast, ANTS belongs to a third style of systems that 
do not a priori restrict who can program which nodes. In- 
stead, ANTS aims to allow each user to construct new data 
transfer services across the wide-area, such as routing for 
host mobility, by controlling the handling of their own pack- 
ets within the network. This is analogous to extensible op- 
erating system approaches [21, 5] that aim to offer untrusted 
applications as much control over the way system resources 
are managed as possible while still being able to protect the 
underlying resources and arbitrate between competing de- 
mands. 

ANTS is based on an aggressive "capsule" approach in 
which code is associated with packets and run at selected IP 
routers that are extensible. We sketch its design in the fol- 
lowing section. Two other capsule-based systems, PAN [30] 
and PLAN [16], are similar in spirit to our own, and ex- 
perience with both, on the whole, supports the conclusions 
drawn here. We mention specific results in the text as appro- 
priate. PAN is modeled on ANTS and differs principally in 
that its capsules transfer unsafe binary forwarding programs 
and execute them directly, trading security for performance. 
PLAN capsules carry short programs in a specially-designed 
language that is the basis for system security. In contrast, the 
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Figure 1. Entities in an ANTS active network 

ANTS toolkit builds on the safety properties of  Java byte- 
codes. 

A final strategy that does not fit into these three styles is 
worth noting. Active services [2] seek to gain the advantages 
of active networks without disturbing the network layer by 
relying on domain-specific proxies to support "value-added" 
network services such as transcoding. We consider domain- 
specific solutions to be a useful tool, but the use of prox- 
ies to be largely orthogonal to many active network design 
problems. Clearly, proxies are valuable for incremental de- 
ployment. (They are not the only option though. We prefer 
firewall-style interception at selected routers because of the 
late-binding that it provides, and the potential for access to 
routing and load information that it retains.) However, the 
use of proxies rather than extensible routers does not resolve 
design issues such as the extension API, code distribution 
and global resource management, all of which must be tack- 
led in any real system. 

3 The essentials of  ANTS 

In this section, we summarize the details of ANTS that are 
needed to understand the subsequent discussion. We focus 
on "bootstrapping the reader" by explaining how it works; 
we defer arguments about why it works in this manner to 
the following sections. The summary is based on the refer- 
ence version of ANTS detailed in a dissertation [45], which 
supersedes an earlier exposition [46]. 

We describe ANTS along two lines: the interface it 
presents to users at the edge of the network, and its im- 
plementation within the network. In addition, we comment 
on the ANTS toolkit, a reference implementation written in 
Java, and how ANTS may be deployed incrementally in the 
Internet. 

3.1 Interface 

The entities in an ANTS network are shown in Figure 1. Ap- 
plications obtain customized network services by sending 
and receiving special types of packets called capsules via 
a programmable router referred to as an active node. Each 

active node is connected to its neighbors, some of which can 
be conventional IP routers, by link layer channels. The in- 
novative properties of an ANTS network stem from the in- 
teraction of capsules and active nodes; the application and 
channel components are simply modeled on those of con- 
ventional networks. 

The format of a capsule, shown in Figure 2, is an ex- 
tension of the IP packet format. Capsules are like mobile 
agents in that they direct themselves through the network by 
using a custom forwarding routine. The type of forwarding 
is indicated by the value of the type field and is selected by 
end-user software when it injects a capsule into the network. 
The corresponding forwarding routine is transferred using 
mobile code techniques to active nodes that the capsule vis- 
its as it passes through the network. The routine is executed 
at each active node that is encountered along the forwarding 
path. At conventional nodes, IP forwarding occurs using the 
IP header fields. 

Any party can develop a new network service and make 
it available for widespread use. The first step is to write a 
new set of forwarding routines that implement the desired 
behavior. This is done in a subset of Java in our reference 
implementation, the ANTS toolkit. Each different forward- 
ing routine corresponds to a different type of capsule and 
can carry different header fields (the type-dependent header 
fields in Figure 2). The kinds of forwarding routines that 
can be constructed depend on the capabilities of the active 
node; routines are further restricted in the amounts of node 
resources they can consume. The ANTS toolkit provides 
a core API, listed in Table 1, that grew out of experience 
with a predecessor system [47] and consists of the small- 
est set of operations with which we were able to develop 
many different services. It provides three categories of calls 
that: query the node environment; manipulate a soft-store of 
service-defined objects that are cached for a short time and 
then expired; and route capsules towards other nodes or ap- 
plications in terms of shortest paths. These calls allow novel 
routing services to be expressed by querying network char- 
acteristics, maintaining route information in the soft-store, 
and following it during forwarding. Additional API calls 
will likely be added with further development and experi- 
ence. Loss information, for example, is clearly useful for 
congestion-related services, yet absent from the list because 
it is inconvenient in our current user-level Java implementa- 
tion. 

Once the code is written, it is signed by a trusted author- 
ity (an IETF-equivalent) to certify that the service makes use 
of overall network resources in a "reasonable" fashion. Cer- 
tification reflects global resource management concerns that 
we have not otherwise resolved in the general case. This 
issue is discussed in Section 5. Finally, the code is regis- 
tered with a directory service using a human-readable name 
(such as "Drop Priority") to make it available to other net- 
work users. 

End-user software can use a new service developed ac- 
cording to this model in a simple manner. First, the service 
code is obtained' via the directory service, which is simply 
the local filesystem in our prototype. In a large-scale net- 
work, this step can be made automatic (without burdening 
applications) with a process analogous to DNS host resolu- 
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corresponding IP header + ANTS-specific header + higher layers 

source destination I 
address address I TTL I versionlt --e I previous type-dependent] 

I YP laddress header fields I payload 

J 

-< capsule ] ~  
Figure 2. Key features of the capsule format 

I Method 
int getAddress() 
ChannelObject getChannel() 
Extension findExtension(String ext) 
long time() 

Description 

Get local node address 
Get receive channel 
Locate extended services 
Get local time 

Object put(Object key, Object val, int age) Put object in sofi-store 
O b j e c t  g e t  (Ob jec t  key)  Get object from soft-store 
O b j e c t  remove ( O b j e c t  key)  Remove object from soft-store 
void routeForNode (Capsule c, int n) Send capsule towards node 
void deliverToApp (Capsule c, int a) Deliver capsule to local application 
v o i d  log  ( S t r i n g  msg) Log a debugging message 

Table 1. Active node API 

tion. Second, the service is registered with the local active 
node. This provides the node with a copy of the service code 
to bootstrap code distribution within the network, and allows 
the node to compute the type values that will be placed on 
corresponding capsules. Once these steps are complete, ap- 
plications are free to send and receive capsules that belong to 
the new service, and these capsules will be forwarded within 
the network by executing the corresponding routines. 

3.2 Implementation 
To process capsules efficiently for the expected traffic pat- 
terns of our target applications, ANTS separates the trans- 
fer of service code from that of the rest of  the capsule and 
caches code at active nodes. Each capsule carries a type field 
as shown in Figure 2 that refers to its customized forwarding 
routine. The value of this type field is based on an MD5 [36] 
fingerprint of the associated service code. Code is provided 
to nodes at the edges of the network by end-user software. 
Within the network, a lightweight code distribution system 
transfers the code along the path the capsule follows when 
the code is not already cached. 

Our code distribution system is designed to provide rapid 
but unreliable transfer of short routines between adjacent ac- 
tive nodes; ANTS places a limit of 16 KB on the code of 
each service to limit the impact of code transfers on the net- 
work. The protocol works as follows (Figure 3). When the 
code needed to forward a capsule is not found in the cache, 
a request is sent to the previous active node that the capsule 
visited. The "previous address" header field (Figure 2) is 

maintained by active nodes for this purpose. If  this node has 
the required code, which is likely because it executed the 
code moments before, it sends the code. The code is then 
cached for later use and executed to forward the capsule. If  
messages are lost or the code is unavailable, the capsule is 
discarded and considered lost. Thus code transfer will either 
succeed quickly, in which case the interruption to forward- 
ing will be close to minimal, or occasionally fail, in which 
case applications must recover the lost capsule in the normal 
manner. 

Once the code has been distributed, capsule processing 
at an active node is straightforward: capsules are received, 
they are demultiplexed using their type field to the associ- 
ated forwarding routine, the routine is safely executed within 
a sandbox, and the process repeats. We refer to this model as 
extensible packet forwarding, since it generalizes the IP for- 
warding model in use today. The sandbox prevents untrusted 
code from corrupting the node and the state of other services 
that are being run concurrently. Capsules may only effect 
externally visible behavior through node API "system calls". 
The sandbox also enforces constraints that facilitate the pro- 
tection and resource management mechanisms discussed in 
Section 5: overall runtime is limited; access to the capsule 
itself is limited so that the source address and type are con- 
stant, while the previous address and TTL are maintained by 
the node; creation of other capsules is restricted so that only 
related types can create each other; and freshly manufac- 
tured capsules obey invariants such as having a smaller TTL 
and the source address of the parent to facilitate distributed 
debugging. The additional packet overhead of this model is 
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Figure 3. Demand loading of capsule code 

modest; type is the largest field in our implementation, and 
at 128 bits it is the size of a single IPv6 address. The addi- 
tional runtime steps are also modest, as is reported in Section 
4.2, because we are able to leverage the restrictions placed 
on forwarding routines to simplify the implementation. 

3 .3  A N T S  Toolkit 

The ANTS toolkit [45] is a reference implementation of the 
architecture described above. It incorporates everything de- 
scribed in this paper with the exception of signing code and 
checking the signatures, since this has no effect once code is 
loaded. The toolkit also carries capsules within UDP data- 
grams that are organized into an overlay, rather than as a 
direct extension of the IP format. This is convenient as the 
toolkit runs at user-level on end-systems. 

Both the reference platform itself and the capsule for- 
warding routines (which are supplied by application devel- 
opers) are written in 100% Java. This has been a valuable 
design choice in that it has allowed us to rapidly develop 
a portable, compact (approximately 10000 lines) and flex- 
ible experimental platform that is accessible to application 
developers. The active node sandbox, for example, builds 
directly on Java's type-safety and security manager frame- 
work, while code distribution is facilitated by dynamic load- 
ing mechanisms. As a result, the ANTS toolkit has been 
widely used within the research community. 

The cost of this design choice has primarily been per- 
formance, though the lack of fine-grained control over re- 
sources, for example, the size of objects and garbage collec- 
tion, has also been a limitation. We expect much of these 
costs to eventually be recovered, since neither the reference 
platform nor the forwarding routines need to be written in 
Java in a different implementation. In the short term, the 
platform can be statically compiled and, with a suitable Java 
runtime, reside in the operating system along with other net- 
working code. Ultimately, safe execution techniques ap- 
plicable to binaries (namely software-based fault isolation 
(SFI) [44] or proof-carrying-code (PCC) [29]) could be used 
in higher performance implementations. Alternatively, spe- 

cialized runtimes would improve performance by exploiting 
the subset of Java (or other language) that is used to write 
forwarding routines. For example, ANTS requires that for- 
warding routines be single-threaded. 

3.4 Deployment 

ANTS is designed to be deployed incrementally within the 
Internet today. Since not all nodes are required to be ac- 
tive, a straightforward step is to selectively activate nodes in 
strategic locations, This is likely to begin with end-systems, 
along with routers connected to bandwidth-limited wireless 
and access links, and followed by increasingly high perfor- 
mance routers at ISPs within the network. Activating such 
routers can be straightforward because ANTS nodes can be 
embedded in the network and intercept capsules that pass 
through them. 

At a finer granularity, nodes can be active for selected 
services, but perform IP forwarding for other services. The 
ANTS architecture allows this decision to be made locally 
by each node. This strategy can extend the performance 
range of active nodes: compute-intensive services that are 
not dynamically loaded because they do not run at the line 
packet rate can instead be statically loaded if the capsules 
that use them arrive infrequently. This is analogous to the 
way ICMP and other services are handled separately from 
the IP "fast path" in high-bandwidth routers. This line of 
reasoning suggests that hybrid active node implementations 
will be useful for combining the performance of high-end 
routers with the flexibility of programmable services. For 
example, an IP router could be extended with an attached 
PC that receives packets via a classifier. 

4 Are capsules feasible? 

We now switch gears and turn to the main contributions of 
this paper. The first question we consider is essentially one 
of performance: are capsules a feasible mechanism on which 
to build active network programs? 

We argue that when capsules are implemented as de- 
scribed in Section 3.2, they can be a competitive forwarding 
mechanism wherever software-based routers are viable. We 
argue this in two ,steps. First, that capsule code can indeed 
be carried by reference and loaded on demand. Fingerprints 
have proved an effective design technique here. Second, that 
the intrinsic overhead of capsule processing is low and so 
adds little to the cost of IP forwarding when both are imple- 
mented in software. 

Of course, software-based forwarding will not be vi- 
able at all network locations, even in router designs with 
a processor per port. At one extreme, current genera- 
tion PC-based routers provide a flexible processing envi- 
ronment capable of forwarding at least 70,000 packets/sec, 
easily reaching 100 Mbps for typical packet sizes [28]. 
They are poorly-suited to this task as they are I/O lim- 
ited. At the other extreme, modem high-end commercial 
routers can forward 70 byte packets at wire speed for OC- 
48 (2.4Gbps) line rates, which requires forwarding rates ap- 
proaching 4,000,000 packets/sec [42]. The difference is a 
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factor of 50. It is difficult, however, to evaluate the poten- 
tial of extensible routers because of the changing underlying 
technologies; for example, reconfigurable hardware such as 
RaPiD [10] is appearing. Ultimately, the applications of a 
programmable node will be constrained by its capabilities 
and position in the network. For example, processor rates of 
1 GHz and line rates of  1 Gbps imply an average process- 
ing budget of 1000 cycles, if all packets are to processed and 
the average size is 128 bytes. This figure varies by orders 
of magnitude, reaching 100,000 cycles if 10% of the pack- 
ets are processed and the line rate is 100 Mbps, for exam- 
ple. Thus a network in which node capabilities are hetero- 
geneous seems fundamental to us. It is for this reason that 
our architecture supports partially active networks in which 
some routers, such as those in the core of the Internet, can 
implement IP forwarding only and are not slowed by capsule 
processing. 

4.1 Implementing capsules 
One of the first changes we made in moving from an earlier 
active network system to ANTS was to carry capsule code 
by reference rather than by value. Besides the obvious space 
and time overheads of carrying code and converting it to an 
efficient executable representation, we observed that most 
of the applications we were exploring exhibited significant 
locality - -  the same code was executed along the same net- 
work path. This is particularly so for network layer evolution 
where, although many new services might be tried over time, 
a small number of services account for virtually all of the 
traffic at any given instant. We believe that this is unlikely to 
change, even in a much more dynamic network, because of 
the existence of higher layer flows and a dependence on third 
party software. Most other active network systems that em- 
phasize performance also cache code, for example PAN [30] 
and router plugins [I 1, 12]. PLAN [16] does carry a small 
amount of code directly, but similarly distinguishes between 
forwarding fragments and extension code that is cached I. 

To provide the same behavior as the capsules described 
in [41], we must be able to distribute the right code to the 
right place, where "right" is determined by a model in which 
the code is actually present in each capsule. Each mecha- 
nism can potentially cause difficulties. 

To ensure the right code, we compute the type identifiers 
that are stamped on each ANTS capsule from an MD5 [36] 
fingerprint of the corresponding code 2. This is analogous to 
the way fingerprints are used to name the types of network 
objects [7]. We originally chose this method as a distributed 
naming scheme to eliminate the need for standardized proto- 
col identifiers, but quickly came to value its security proper- 
ties. It is secure because a belief that the fingerprint function 
is one-way implies that the association between a capsule 

lit is also interesting to note that PLAN forwards capsules 
roughly three times as fast as ANTS. As best we can tell, this is 
due more to the performance of the underlying language runtimes 
and better marshaling code than architectural choices. 

2We first heard this technique suggested in the context of pro- 
tocol code by Gary Minden. We pioneered its use at the same time 
as PAN [30]. 

and its forwarding code is unambiguous 3. Because this cor- 
respondence can be verified locally, without trusting exter- 
nal parties or relying on external information, the danger of 
code spoofing is eliminated. SFS uses fingerprints as the ba- 
sis of self-certifying pathnames [26] for essentially the same 
reasons. 

A significant difference compared to conventional pro- 
tocols is that the identifier names an implementation rather 
than an interface. This is potentially beneficial because it 
eliminates versioning problems: different versions of code 
are treated as different services within the network. How- 
ever, we have found that this property typically means that a 
higher level of naming is soon introduced. In our system, a 
directory service is used by end-user software selecting pro- 
tocols, and bootstrap capsules (such as those that transfer 
code between active nodes) carry well known names. Any 
higher level of  naming must then be secured if it is not to 
negate the fingerprint properties that we value. 

To transfer code to the right place, we have found the 
simple scheme described in Section 3.2 to be quite general 
and sufficient to our needs. In networking parlance, service 
code is "soft-state" [9] that is automatically replenished as 
it is needed. The scheme thus adapts to packet loss, node 
failures and changing routes, all without complicating cap- 
sule semantics with extra mechanisms such as an explicit 
"connection" setup phase. Because it interleaves capsule 
forwarding and code transfer hop-by-hop, it can be used to 
load new routing services. 

There are also more subtle issues that we have uncovered 
while studying code distribution. For example, the code dis- 
tribution system should not leave active nodes open to a de- 
nial of service attack. The hop-by-hop nature of our scheme 
may be of use here, since code messages are only exchanged 
between neighbors and can easily be authenticated, thus re- 
ducing the scope of attacks. Also, unless the latency of load- 
ing is small it may conflict with the end-system timeouts that 
are used to detect loss. For our system, a measurement-based 
analysis [45] predicts that loading delays will fall within the 
normal range of one-way transit variations (of 0.1 to 1 sec- 
ond) reported in [33], even for cross-country paths. Caching 
behavior under overload is also of  concern. 

For the most part, however, we have deferred serious 
analysis of the performance of code distribution mechanisms 
until there is greater experience with large scale active net- 
works. We observe that, if code loading is rare enough, its 
performance will be of little consequence as long as it is ad- 
equate. We believe our scheme provides adequate perfor- 
mance, but further observe that ANTS could be used with 
other code distribution schemes in practice. 

4.2 Forwarding performance 
At active nodes, processing can be separated by the granu- 
larity at which it occurs: 

• per capsule forwarding tasks; 

3There is some evidence that the collision-resistance of MD5 
may be broken in the foreseeable future [37], but to our knowledge 
no evidence that the one-way property on which we depend is in 
question. 
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• per service code distribution; and 
• periodic node management tasks. 

Of these tasks, only capsule forwarding limits node per- 
formance in practice. For the traffic patterns of interest, code 
caching is effective and so code distribution is rarely needed. 
Measurements of the ANTS toolkit showed a processing cost 
of approximately 1 ms per code distribution message, with 
up to a maximum of 16 messages to transfer service code. 
This is approximately one order of magnitude more expen- 
sive than regular capsule forwarding, and requires that the 
cost of loading be amortized over around 1000 capsules be- 
fore it has a negligible impact (1%) on network performance. 

Periodic tasks in ANTS, such as route updates and clean- 
ing of the soft-store, do not result in a noticeable slowdown 
either. This is because we are able to make them occur at a 
much coarser granularity than capsule forwarding (seconds 
rather than microseconds) and implement them in a manner 
that does not block forwarding for their duration. 

We also note that capsule forwarding is readily paral- 
lelized to run on routers in which there is one processor per 
port. This is because no tight synchronization is required 

between the per port forwarding engines. An initial concern 
was that the soft-store would require synchronized access. 
We have found, however, that this potential problem can be 
eliminated by design, since it does not complicate active net- 
work programming to define the soft-store to be a per port 
resource. 

To understand the costs of capsule processing, we mea- 
sured the forwarding performance of a single ANTS node 
while running a basic service that is the equivalent of IP, yet 
implemented within the ANTS framework rather than as a 
built-in capability. For comparison, the performance of user 
level relays written in Java and C, but otherwise running on 
the same system, are also shown; these blindly receive and 
then transmit packets, without the intervening processing re- 
quired by ANTS. The experimental platform used was a Sun 
Ultra 1 running Solaris 2.6 and an early access release of  
Sun's JDK1.2. It has an estimated performance of 3.5 on the 
SPECJVM98 benchmark, while the hardware and operating 
system alone have publicly available performance results of 
approximately 6 on the SPECINT95 benchmark 4. 

Throughput results are shown in Figure 4, and latency re- 
sults in Figure 5. We see that ANTS forwards approximately 
1700 capsules/see for small packet sizes and 16 Mbps for 
large (Ethernet) packet sizes, with corresponding latencies 
that range from approximately 500 to 700 #s. ANTS and 
Java relay throughput is similar, while C relay throughput is 
greater by between a factor of three and four. For latency, the 
result is similar though less pronounced, with ANTS adding 
roughly half of the difference between Java relay latency and 
C relay latency; we have not tuned our system for latency. 

While these results are unimpressive by production stan- 
dards, they do serve to demonstrate three points. First, even 
at face value, they show a level of performance that is ad- 
equate to deploy active nodes across access links up to T1 
(1.5 Mbps) rates immediately. Second, ANTS captures most 
of the potential of Java relay, the minimal Java-based user- 
level system running on the same platform. Third, the sim- 
ilar slopes of the latency lines indicate that capsule pro- 
cessing does not' contain hidden data-dependent costs (ex- 
tra copies) compared to a minimal relay. The conclusion we 
draw is that the performance of our prototype is limited by 
both user-level and Java-based operation, neither of which 
is required by our architecture. The user-level C relay is 
faster by a factor of four, and it is likely that an in-kernel 
implementation is faster by a factor of at least two again. 
These observations suggest that substantially faster imple- 
mentations can be constructed without resorting to custom 
hardware. PAN [30] is one step in this direction. It imple- 
ments an architecture that is modeled on ANTS, but with 
in-kernel binary forwarding routines that forego protection. 
By doing so, it is able to saturate 100 Mbps Ethernet with 
1 KB packets, almost an order of magnitude improvement. 

To understand the fundamental costs of capsule process- 
ing in more detail, we profiled an ANTS node running on 
the same platform. We did this for 512 byte capsules with 

4The SPECJVM98 result is an estimate because one of the 
seven tests we ran produced invalid results due to bugs in the run- 
time and benchmark. The publicly available results come from the 
SPEC website at www.spec.org. 
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Operation 

1. Packet Receive no 
2. Header Processing yes 
3. Type Demultiplex no 
4. Capsule Decode no 
5. Capsule Evaluate no 
6. Route Lookup yes 
7. Capsule Encode no 
8. Header Processing yes 
9. Packet Transmit no 
Other n/a 
Total rda 

Time (#s) 

180 29 
30 5 
20 3 

110 18 
10 2 
30 5 
90 14 
40 7 
80 13 
25 4 

615 100 

Table 2. Profile of basic capsule processing 

built-in Java runtime facilities, and normalized the result us- 
ing the previously reported latency to account for profiling 
overhead. The results are shown in Table 2. In the profile 
results, ANTS processing is divided into nine steps, some of 
which are analogous to the steps that occur in IP and some 
of which are unique to ANTS. This is noted in the "IP?" col- 
umn. For this comparison, IP processing steps are abstracted 
from RFC 1812 [3], which defines the standard IP process- 
ing that must be performed by all IP routers. 

1. A message is received from the incoming network in- 
terface via the operating system. IP in the kernel does 
not require this step, and neither would ANTS if run- 
ning in the kernel. 

2. The structure of the message is checked to ensure that 
it is a valid capsule. The checks are simple, and IP 
performs analogous checks. 

3. The capsule type is mapped to the appropriate forward- 
ing routine. This is done with a hash table lookup. 
There is no corresponding requirement for IP. 

4. The capsule is decoded from an external packet repre- 
sentation to an internal object representation. This step 
requires object allocation and member initialization by 
copying. It is an artifact of the Java-based implemen- 
tation that is not intrinsic to the ANTS architecture. 

5. A forwarding routine is invoked. To implement IP 
service, the forwarding routine simply invokes default 
forwarding via the active node. While default forward- 
ing is the same as IP forwarding, expressing it as a 
service within ANTS generates some overhead to set 
up the call in a safe and generic manner. 

6. A routing table lookup is performed. In the prototype, 
a simple hash table lookup is used, while in IP and 
a production ANTS system a more expensive longest 
matching prefix operation is needed. (The greater rel- 
ative cost of this step in practice will result in a more 
favorable comparison than is made here.) 

7. The capsule is encoded to an external packet represen- 
tation from an internal object representation. Again, 
this step is not intrinsic to ANTS. 

8. Header fields are updated, for example, by decrement- 
ing the TTL and setting the previous node address. The 

updates are simple, and IP requires analogous updates, 
though fewer in number. 

9. A message is sent to the outgoing network interface via 
the operating system. IP in the kernel does not require 
this step, and neither would ANTS if running in the 
kernel. 

Clearly, our user-level profiling and analysis can project 
only approximate results for a kernel-level implementation. 
However, what is significant is how few complex process- 
ing steps are required for capsule forwarding. In particu- 
lar, a number of steps are not required in the current model, 
but easily could be in alternative designs: code distribution, 
because it has been separated; authentication, because state 
protection is built on the fingerprint identifiers as described 
in the next section; and resource reservation and account- 
ing, because we follow the basic connectionless forwarding 
model. 

To contrast ANTS and IP processing using the results 
in Table 2, we first exclude the receive and transmit times, 
since they would not be substantial in a kernel-based im- 
plementation. Note that this will increase the overhead at- 
tributed to ANTS. Of the remaining ANTS-only steps, the 
largest components by far are for capsule encoding and de- 
coding, both of which are artifacts of our Java-based proto- 
type rather than intrinsic costs of capsule processing. This 
difficulty is well known but not satisfactorily addressed with- 
out language support such as the view construct in SPIN's 
version of Modula-3 [ 18]. We therefore exclude these costs. 

The remaining processing steps correspond to intrinsic 
costs. The profile data shows that, for these steps, ANTS 
adds 30 #s to the 100 #s needed for IP. That is, ANTS adds 
an overhead of roughly 30% to IP to perform type demul- 
tiplexing and safe evaluation. Both of these operations are 
known to run quickly. Demultiplexing is efficient because it 
requires only a hash lookup. This is facilitated in ANTS be- 
cause the fingerprint provides pseudo-random bits that can 
be used directly as an index. Safe evaluation can be per- 
formed efficiently with binary forwarding routines in a high 
performance implementation: SFI [44] is known to add an 
overhead of approximately 4% for fault isolation (write pro- 
tection) and approximately 20% for general (read/write) pro- 
tection, while PCC [29] adds no runtime overhead after the 
proof is checked when the code is loaded. Other costs will 
of course depend on the forwarding routine itself, but these 
costs are deliberately incurred when a new service provides 
a performance advantage. The forwarding times for some 
routines are reported in Section 6. We note here that all of 
the node API operations can be implemented to run quickly 
since all are lightweight; for example, none require disk ac- 
cess or network roundtrips. 

5 W h o  can in troduce  n e w  services? 

The vision presented in [41] is that all users should be able to 
customize processing within the network. This would foster 
third party developers and a marketplace for new services 
that would accelerate the pace of innovation. Mobile code 
technologies are suggested as a mechanism that will enable 
programs to be run safely in the context of shared resources. 
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We have partly succeeded in reaching this goal, finding 
security concerns to be more challenging than those of per- 
formance. After all, it is clear that the speed at which capsule 
forwarding can be implemented will dictate where it is ap- 
plied. But it is not clear that the resource management and 
security difficulties can be resolved in a large wide-area sys- 
tem without restrictions that negate the original vision. 

In ANTS, we are able to isolate the code and state of 
different services in a manner that is equivalent to that of 
static and trusted protocols today. This is despite the fact 
that service code is mobile and untrusted. We view this as 
substantial progress. On the other hand, we currently handle 
the problem of global resource allocation with a certifica- 
tion mechanism that slows the rate of change compared to 
the active network vision, though we argue that the resulting 
system can still evolve much more quickly than the Internet. 

The rest of this section elaborates on these findings along 
the lines of the protection and resource management threats 
that exist, and how they are handled in ANTS compared to 
the Internet. We consider protection threats to be those that 
directly impact the execution of a service within the network 
so that it is no longer isolated from other code and hence no 
longer guaranteed to behave correctly. We consider resource 
management threats to be those that affect the performance 
of a service, rather than its correctness, by consuming shared 
resources in an unreasonable fashion that starves other legit- 
imate network users. That is, we are more concerned with 
network robustness than fairness. 

5.1 Protection 

The ultimate goal of ANTS is to allow untrusted users to 
control the handling of their own packets within the network, 
yet to ensure that the code they provide can do no harm to 
the users of other services even if it is designed poorly or 
used maliciously. Early in our design effort, we realized 
that the capsule model provides a clear basis for simplify- 
ing interactions within the network: each capsule explicitly 
specifies its own handling via its type field, which is carried 
with the capsule through the network as shown in Figure 2. 
To extend this scheme into a protection model that is equiv- 
alent to the operation of conventional protocols, we added 
the stipulation that a capsule cannot change its type to that 
of  another service (or equivalently create capsules of another 
service) within the network. This is enforced by the ANTS 
runtime sandbox described in Section 3.3. The result is that 
the processing a capsule can undergo is fixed by the value of 
its type field at the moment it is injected into the network, 
in the same manner that an IPv4 packet is forwarded with 
IPv4 processing only. This means that, for example, it is 
not possible to construct a service that arbitrarily searches 
the network and then interferes with capsules belonging to 
another service. 

This model is straightforward to understand, and has 
worked well for us once we extended it to allow for the 
controlled sharing of state between related types of cap- 
sules (as described shortly). It provides an authentication- 
free foundation on which other security mechanisms can be 
constructed as they are needed. We have found that, while 

it does limit the kind of services that can be constructed in 
ANTS, the benefits of having this form of protection model 
far outweigh the costs. A typical example of a service that is 
difficult to realize is a firewall, since one type of capsule can- 
not directly control the forwarding of another type. (How- 
ever, these kind of services are not targeted by ANTS.) 

Protection threats that would break this model must stem 
from the transfer and execution of code within the network. 
It appears to us that there are only three kinds of threats that 
could result in capsules of one service being handled in an 
unintended manner, whether accidental or malicious, that 
cannot occur in the Internet except in response to a faulty 
implementation: 

• the node runtime may be corrupted by service code; 

• service code distributed to an active node may be cor- 
rupted or spoofed; and 

• the state cached at an active node on behalf of  one ser- 
vice may be inadvertently manipulated by another ser- 
vice. 

The first threat, corrupting the active node itself, is met 
through the use of safe evaluation techniques for executing 
service code. While the ANTS toolkit relies on the proper- 
ties of Java, other implementations could be based on proof- 
carrying code (PCC) or software-based fault isolation (SFI). 
The net result is ,that the sound implementation of the node 
runtime implies that it cannot be crashed or otherwise cor- 
rupted by arbitrary service code in the same sense that tra- 
ditional operating systems protect themselves from applica- 
tions. 

The second threat, code spoofing or the transfer of cor- 
rupted code, is met through the use of fingerprint-based cap- 
sule types, as was previously discussed. 

A third means of interfering with a service is to corrupt 
the state that it maintains at an active node. This is prevented 
in ANTS by a restricted node API. Access to state shared 
across services is guarded. For example, the default shortest- 
path routes can only be read by services, so that one service 
cannot alter them for another. Only two forms of service- 
specific state are retained by a node after a capsule is for- 
warded: service code itself and data placed in the soft-store. 
The code is readily protected because it is read-only. The 
data is protected by building on the fingerprint-based cap- 
sule types to partition the soft-store by service. This guar- 
antees that state maintained on behalf of one service cannot 
be manipulated by code corresponding to another service. 
Conversely, sharing between the sessions of a service is con- 
trolled by the service code. 

A significant complication that we faced to make this 
model useful is the need for read and write sharing between 
different types of  capsules. To implement many services, 
a set of related forwarding routines must be able to share 
state within the network. For example, one type of cap- 
sule may establish custom routes by placing information in 
the soft-store of nodes, and another type of capsule follow 
those routes by accessing the information. We accomplish 
one level of  sharing in a secure manner by using a hier- 
archical fingerprint scheme for computing the capsule type 
identifiers. Essentially, if capsules with forwarding routines 
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A a n d / 3  are to share state within the network and XH is 
the fingerprint o f  X,  they are marked with the type identi- 
fiers (A, (A, B ) H ) H  and (B, (A, /3)H)H.  5 Code distribu- 
tion then transfers the routines A and /3  when they are re- 
quired so that the type identifier can be verified. In this man- 
ner, capsules of  type A and 13 can be recognized as belong- 
ing to a single service that is identified as (A,/3)n and state 
can be shared between them. This scheme also prevents an- 
other routine, C, from later claiming to belong to the service 
and manipulate its state. 

In sum, ANTS provides measures that defeat all of  these 
kind of  threats so that the protection provided by ANTS is as 
good as the protection afforded to protocols in the Internet 
today. This is so despite the fact that ANTS services are im- 
plemented with mobile and untrusted code (certification is 
not required for basic protection) while conventional proto- 
cols are implemented with static trusted code. Further, these 
measures are robust because they are implemented by each 
active node without relying on any external parties. 

In the larger context, Internet security is in the process of  
being extended because it is known to be weak. Both ANTS 
and the Internet protect different protocols from interfering, 
but not different users of  a protocol from interfering with 
each other. An interesting use of  ANTS is to introduce new 
security services that add authentication and encryption at 
selected points. This could easily be done by extending the 
node API with authentication and encryption calls that ser- 
vices could combine to meet their own security needs. 

5.2 Resource management 

We now provide a taxonomy of  resource management 
threats. In ANTS, one service can potentially interfere with 
the performance of  another in three ways: 

• a capsule may consume a large, possibly unbounded, 
amount of  resources at a single node; 

• a capsule and other capsules it creates within the 
network may consume a large, possibly unbounded, 
amount of  resources across multiple nodes; and 

• an application running on an end-system may be used 
to inject a large, possibly unbounded, number of  cap- 
sules into the network. 

This classification is useful because it highlights re- 
source management tasks that can readily be addressed, re- 
main open in both ANTS and the Internet, and the difference 
between the two. 

The first threat, too many resources used at a node during 
the forwarding of  a single capsule, is able to be met in ANTS 
with current technology because the programming model is 
restricted. In the Internet, the resources consumed during 
packet forwarding are implicitly bounded by the design and 
correct implementation of  IP and other network protocols. In 
ANTS, the node runtime enforces simple resource bounds. 

5Actually, type calculation is more complex because there is an 
intermediate level of naming between individual capsules and ag- 
gregate services that is used to minimize code distribution. See [45] 
for details. 

Long running forwarding routines are broken with a watch- 
dog timer. Termination is simplified by unloading all state 
associated with forwarding routines that trigger violations. 
Access to memory and bandwidth is limited by decrement- 
ing the TTL field to prevent a capsule from sending a large 
number of  outgoing capsules (as defined by the TTL) or 
placing a large number o f  objects in the soft-store. Alter- 
native local policies, such as static limits on the fanout of  a 
capsule, could easily be enforced. Other resources, such as 
the stack, can be similarly limited, though this is not done 
in the prototype because it requires the Java runtime to be 
modified. This simple scheme has been sufficient to our pur- 
poses because we are more concerned with preventing gross 
errors in the set of  cached services than accounting for all re- 
source consumption or enforcing fairness between capsules. 
Other research efforts, such as RCANE [27], are exploring 
active network environments that support more fine-grained 
control of  resources. 

The third threat, that misbehaving applications may 
starve well-behaved ones exists in both ANTS and the In- 
ternet and is not well addressed in either. The root of  this 
problem is that the Internet currently lacks network-based 
resource allocation mechanisms; instead, it relies on the co- 
operation of  users 6. This is increasingly recognized as prob- 
lematic, and efficient network-based mechanisms are fun- 
damentally needed to improve fairness and penalize non- 
responsive flows [8] in the same manner that operating sys- 
tems, not applications, must arbitrate between competing re- 
source demands and protect the system. These mechanisms 
will benefit an active network in the same ways they benefit 
the current Internet. 

In-between these extremes lies the more difficult task of  
controlling the resource consumption of  a capsule and its 
descendents across a group of  nodes. This task differenti- 
ates active networks from the Internet. In the Internet, the 
resources that are consumed as a packet is forwarded from 
source to destination are relatively well understood in terms 
of  a static model that limits bandwidth, memory and pro- 
cessing time. This, of  course, assumes correct design and 
implementation, which is not always the case. 7 In an active 
network, however, resource consumption is driven by pro- 
grams and cannot be finessed by arguments of  a restricted 
set of  developers. It will be much more dynamic in nature, 
and must be restricted in its form to ensure that the effects of  
one service on others or a region of  the network are reason- 
able. 

One useful technique is a per capsule hop limit. In 
both IP and ANTS, packets and capsules would consume 
unbounded resources if blindly forwarded around a routing 
loop. The TTL field is used to break such loops in IP, and 
ANTS uses the same mechanism to detect and stop an anal- 
ogous class of  infinite loop program errors. PLAN [ 16] goes 
further by dividing the TTL between a capsule and its de- 

61t is often mentioned that the access bandwidth of a user limits 
the impact they can have on the network. However, this is a poor 
allocation mechanism at best. It does not prevent, for example, 
equally capable users from starving one another of bandwidth to a 
given destination. 

7For an example flaw see CERT Advisory CA98-01, SmurfIP 
Denial-of-Service Attacks, January 1998. 
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scendents so that the original TTL bounds the total amount 
of resources consumed within the network. We consider 
TTL-based mechanisms insufficient, however, to prevent 
capsules from consuming an excessive (though bounded) 
amount of node resources if directed to do so by a poorly 
designed service. TTLs cannot provide a tight bound on ac- 
tivity when multicast must be accommodated. This is be- 
cause the number of"capsule-hops" that can legitimately re- 
sult from a single capsule grows with the multicast group 
size, and so can be large. More fundamentally, the property 
that we want to hold is that capsule forwarding does not re- 
sult in activity that is concentrated in a small region of the 
network, swamping nodes in the process. Activity that is 
significant but not concentrated, as occurs when multicast is 
implemented correctly, can be an efficient use of resources 
and should be allowed. However, since TTLs are not related 
to topology they cannot readily restrict the location of activ- 
ity. Even without multicast this is problematic. For example, 
consider a service that "ping-pongs" a capsule between ad- 
jacent nodes until its TTL is exhausted. With a maximum 
TTL of 255 (8 bits as in IP), a node sending one capsule 
with a buggy or malicious forwarding routine might inflict 
100 capsules worth of forwarding work on other nodes. 

Better mechanisms are therefore needed. In particular 
cases, it may be practical to locally check that programs 
match a restricted form. For example, forwarding rou- 
tines that route a capsule towards a fixed destination and do 
not create other capsules satisfy most definitions of "safe." 
Though this class may sound restrictive it includes selec- 
tive discard, congestion notification and network merging 
services. Fairness mechanisms that limit the impact of mis- 
behaving users, such as fair queuing, will also mitigate the 
damage that can be inflicted by a poorly designed program. 
However, they cannot prevent such programs from consum- 
ing more resources than is appropriate. 

Until better solutions are available, we have fallen back 
on the mechanism of requiring that service code be certi- 
fied with a digital signature by a trusted authority (an IETF 
equivalent) before it is freely executed at nodes. This runs 
counter to the other mechanisms of the node runtime in that 
it depends on external parties. Nonetheless, we argue that 
it results in a system that is capable of evolving much more 
rapidly than is possible today. This is because certification 
differs from standardization in that it does not seek to define 
a single preferred behavior. Rather, no consensus is needed 
and certification only seeks to establish that a service makes 
reasonable use of overall network resources, regardless of 
whether it is considered an effective means of accomplishing 
a particular task. To simplify the potentially difficult task of 
inspecting programs for certification, we note that the latter 
need not be foolproof since it is not necessary to hold all pro- 
grams to the same level of accountability. To support rapid 
experimentation, for example, it would be possible to mod- 
ify the ANTS runtime to execute code that is newly certified 
(or even not certified) at a reduced rate, so that it consumes 
no more than 1% (say) of the available resources. Fresh code 
could similarly be certified for a restricted period in which 
a trial can be run. Together with a revocation mechanism, 
such techniques would allow new services to be gradually 
accepted as experience is gained with them. We also note 

that the availability of executable code raises the possibil- 
ity of automatically testing services against common failure 
cases. 

Our current dependence on certification begs the ques- 
tion of whether it is still useful to incur the costs of other se- 
curity mechanisms. We believe that protection and resource 
allocation mechanisms are invaluable because they defend 
against accidental as well as malicious errors; we seek to 
expand our mechanisms to cover the ground nominally pro- 
tected by certification. Even if this can be accomplished, 
however, it is likely that certification has a role to play in a 
practical active network. Signed code provides a trail to fol- 
low when problems arise. It also enables a spectrum of trust, 
whereby more trusted users are allowed access to wider and 
more powerful APIs. We have deferred the study of these 
tradeoffs and associated issues for which we can anticipate a 
need, such as revocation, to future research. 

6 W h a t  services can be introduced? 

We have found the most compelling use of capsules to be as 
a means of rapidly upgrading the services of large, wide-area 
networks such as the Internet. There is a clear need for such 
a mechanism because of difficulties that exist today. For ex- 
ample, IPv6 (the next version of the IP) is proving slow and 
difficult to deploy; if the Internet continues to be successful 
IPv6 will not be the last evolutionary step that is needed. In 
the meantime, backwards-compatible solutions such as Net- 
work Address Translation (NAT) boxes (which map a large 
set of internal addresses to a small set of external ones) are 
gaining ground because they are more readily deployed, de- 
spite the architectural difficulties they present [40]. Further- 
more, today's Internet hampers experimentation: it was not 
possible to test the IPv6 candidates under real conditions be- 
fore selecting a standard. Thus active networks would be of 
tremendous value if they facilitated the widespread deploy- 
ment of even a small number of services such as multicast, 
mobility or IPv6, 

In the remainder of this section we characterize the kind 
of services that ANTS is able to introduce and discuss this 
characterization using examples. We have found that ANTS 
is able to introduce a class of new services that are otherwise 
difficult to deploy. We have also been struck by the number 
of service variations that are enabled by using a program- 
ming language to combine a small set of node operations. 
This leads us to conclude that a viable active network could 
be extremely useful for the experimentation necessary to de- 
sign new protocols. Despite this, it is clear that greater ap- 
plication experience is needed to judge the utility of active 
networks. No single application ("killer app") that proves 
the value of extensibility has emerged, and none is likely to 
because support for such an application can always be built- 
in to the base system. Rather, the advantages of extensibility 
accrue over time. Active networks are no different in this 
regard than extensible operating systems [21, 5], databases 
or language implementations [22]. 
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Service Capsule Code (bytes) I Latency (us) [ Slowdown 
MulticastData 3496 670 1.25 

ANTS-PIM JoinPrune 4325 975 1.82 
RegisterStop 1690 560 1.05 
Query 1844 615 1.15 

WebRoute Bind 1821 685 1.28 
Redirect 1843 600 1.12 
Activate 1991 620 1.16 

Table 3. Latency and code size for sample ANTS capsule forwarding routines 

6.1 Characterization of services 

The reason capsules provide a powerful means for effecting 
change is that they deploy processing along network paths 
in a clean manner that is not dependent on the details of  the 
path itself. This is in contrast with the existing mechanisms 
that are essentially administrative and proceed one router at 
a time. New services that can be deployed in ANTS but are 
difficult to introduce into the Internet today are thus those 
whose implementation is spread across multiple network el- 
ements. They are often variations on routing and forwarding. 
Unlike services constructed above the network layer, they 
can make direct use of topology, loss and load information 
to construct novel routing, flow setup, congestion handling 
and measurement services. 

By analyzing our architecture we have identified the 
characteristics that a service must possess to be able to be 
readily introduced in ANTS: 

• Expressible. The service code must be constructed us- 
ing the restricted node API listed in Table 1. 

• Compact. The service code must be smaller than a self- 
imposed limit of 16 KB to limit the impact of code 
distribution on the rest of the network. 

• Fast. Each routine must run to completion at the for- 
warding rate, or it will be aborted by the node. 

• Incrementally deployable. The service must not fail in 
the case that not all nodes are active. 

We believe that many useful services can be constructed 
to have these characteristics. We have implemented at least 
five services (host mobility, source-specific multicast [46], 
path MTU queries, PIM-style multicast, and Web cache 
routing [45]), the last two of which were case studies of 
services that are intended to be realistic. Others have used 
ANTS to study a number of novel services: an auction ser- 
vice [23]; a reliable multicast protocol [24]; and a network- 
level packet cache [20]. 

As evidence of the utility of capsules, the strongest ar- 
gument we can presently make is to provide examples of 
services that: have been promoted by others; are meritorious 
enough that they have received serious consideration by the 
Internet community; are difficult to introduce in the Inter- 
net today because they rely on network layer state and their 
implementation is spread across the network; and can be in- 
troduced in an equivalent form with ANTS-style capsules. 
We have identified a number of  such services: 

• multicast (PIM-SM [13], CBT [4], Express [17]); 
• reliable multicast support ([31, 25], Cisco's PGM); 
• explicit congestion notification (ECN) [34]; 
• PIP [14], a former IPv6 candidate; and 
• anycasting [32]. 

We identified these services as candidates only gradu- 
ally, as we gained experience constructing forwarding rou- 
tines that possessed the required characteristics. It is not 
obvious how all of  these services can be designed to meet 
the required criteria, and in the remainder of this section we 
discuss the criteria in light of these examples. 

6.2 Discussion 

6.2.1 Express ib le  

The small API available in our prototype has proved suf- 
ficient to express a variety of services. This is partly be- 
cause its capabilities, such as the ability to place application- 
defined objects into the soft-store, are widely applicable, and 
partly because the forwarding routines themselves tend to act 
as "glue" that binds together these capabilities. It quickly be- 
came apparent as we wrote services that this code is a much 
more flexible form of glue than the traditional means of com- 
position in networked systems, layering models, even com- 
pared to micro-protocol systems such as the x-kernel [19]. 
We note that Click [28], an experimental router infrastruc- 
ture containing much finer-grain routines (such as queue ma- 
nipulation), has recently emerged. We view systems such as 
Click as synergistic with active networks, since they provide 
a router with a native set of fine-grain APIs that ANTS cap- 
sules could compose into novel functions. 

Many variations on a forwarding routine are often possi- 
ble, such as multicast protocols that support reliable multi- 
cast, or changes in routing between Web caches that imple- 
ment different search policies. This is significant because 
in ANTS a slightly different service is straightforward to 
use since its deployment is automatic. This could stimu- 
late the real-world experimentation that is necessary to de- 
sign new and improved protocols. Code also provides a 
wider interface with which to discover network properties 
than the "black-box" model that is used today, where prop- 
erties are inferred from observations of traffic. For example, 
path MTU estimates can be obtained by recording the min- 
imum MTU as a capsule is forwarded along a path (at con- 
nection setup time too) rather than relying on heuristics and 
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error messages. This too enriches the variety of services that 
can be expressed. 

The API does not readily allow two kinds of services to 
be constructed, both of which fall outside the design space 
of the ANTS programming model. It is difficult to embed 
long-lived processes in the network, such as a Web cache or 
transcoding engine. This is because the API does not support 
reliable storage or timers. Such capabilities could be added 
to the API by other means, for example an administrator up- 
grading an active node, but they cannot be extended at the 
capsule level. However, ANTS works in synergy with such 
complementary evolution. This is because new services can 
be written to take advantage of new capabilities as they are 
embedded in the network: forwarding routines simply query 
nodes for the availability of a particular feature and act ac- 
cordingly. We speculate that one of the most valuable uses 
of ANTS may be new services that connect applications with 
network-embedded resources (caches, transcoding engines) 
in a more flexible way than the fixed proxies or transparent 
interception that is used today. 

The second kind of service that is difficult to construct 
is that which cuts across many flows, such as firewall filter- 
ing. (But recall that one service can be composed of several 
cooperating types of capsule.) This is because network pro- 
cessing is explicitly selected for each capsule as it is injected 
into the network to support our security model. Instead, this 
kind of service is well-served by extending routers to be pro- 
grammable by the administrator, as is done in [11]. This is 
because processing that cuts across many flows is often used 
to enforce policy at a point. 

6.2.2 Compact and fast 

Forwarding routines tend to be small because they tend to be 
"glue" code. We have not found it difficult to construct ser- 
vices that are smaller than our 16 KB limit, despite a naive 
transfer format that transfers Java classfiles directly. Other 
systems have similarly found that capsule-style code can be 
compact and often acts as glue [39, 16]. Inevitably though, 
this bound will limit the complexity of forwarding routines 
that can be constructed. We believe that a relatively small 
bound, on the order of the current 16 KB, will prove suf- 
ficient for the type of services that ANTS targets and that 
other deployment mechanisms will be more appropriate for 
more ambitious services, such as video transcoding. 

The forwarding routines also tend to complete quickly. 
This is because all of the node API operations complete 
rapidly (none block on disk or network access) and the glue 
code typically combines them in a straightforward manner. 
The majority of the routines we have constructed have run 
within a factor of two of the basic capsule forwarding time. 

As evidence to support these assertions, we provide in 
Table 3 the forwarding times and program code sizes for cap- 
sules of the two most realistic services we have implemented 
in ANTS: PIM-style multicast and Web cache routing. For- 
warding time is given in microseconds across a single ANTS 
node, using the same experimental platform as described in 
Section 4.2. It is also given as a slowdown factor relative 
to results for the "null" ANTS capsule reported in Section 

4.2. This shows the impact of executing a real routine that 
is more complex than IP forwarding. Each line represents 
one type of capsule; each service is comprised of multiple 
kinds of capsules that work together. Web Q u e r y  capsules, 
for example, take 1.15 times as long to forward as the "null" 
ANTS capsule and have roughly 1.8 KB of associated code 
that is first demand loaded. We omit an explanation of the 
services themselves because it is not necessary to understand 
their operation for the purpose of this paper, and they are 
fairly involved. The interested reader is referred to a disser- 
tation [45]. 

6.2.3 Incrementally deployable 

Essentially all new Internet services must be able to be intro- 
duced incrementally or they cannot be deployed. In ANTS, 
this requires that services be able to function in a network in 
which not all nodes are active. Designing services for this 
case has proved to be a challenging but usually soluble task. 

For example, some of the potential services we put forth, 
notably the multicast services such as PIM, are specified for 
a network region in which all routers participate in the im- 
plementation. It is not obvious how to define an equivalent 
service that works in a partially active network. Yet this can 
be done. To see how, consider that PIM can be run in an 
overlay, which is effectively a situation where only some of 
the network nodes implement the service - -  what is needed 
then is a dynamic means of establishing the tunnels of the 
overlay. We designed such a mechanism using capsules as 
part of our PIM-equivalent implementation in ANTS. 

Similarly, active path MTU discovery requires that all 
nodes along the path be active or the result must be treated as 
an estimate. Technically, however, Internet path MTUs can 
only ever be estimates because they must allow for routes 
that change unexpectedly. To the extent that there are active 
nodes adjacent tO bandwidth limited links, which typically 
have the smallest MTUs, the result of an active path MTU 
service will be a useful estimate. 

6.3 Upgrading ANTS 
An interesting class of  services to consider are those that are 
not easily introduced without upgrading ANTS itself. These 
are primarily services that require changes to widely-held 
assumptions, of which we have identified the following ex- 
amples: 

• the way capsule types are computed and carried; 

• the format of addresses; 
• the code distribution mechanism; 

• resource limiting via TTLs; 

• and the node API. 

These base assumptions are shared by active nodes 
throughout the network, and so are difficult to override lo- 
cally. While it would perhaps be preferable to have an ar- 
chitecture that encoded no such assumptions, this position 
is untenable. The chief benefit of ANTS compared to the 
Internet is that the scope of node processing that is fixed at 
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the outset in its function has been greatly reduced. When 
changes to widely-shared assumptions are necessary, they 
must be made by upgrading ANTS in the same way as pro- 
tocols are upgraded in the Internet today, with backwards- 
compatibility, versioning or overlays. For this reason, ANTS 
capsules carry a version number. 

We note, however, that there are often design 
workarounds that obviate the need to change the base as- 
sumptions. For example, though it is not possible to intro- 
duce IPv6 p e r  se  because the format of addresses is fixed, it 
still possible to increase the size of the address space and so 
solve the same problem. PIP [ 14] accomplishes this by using 
the existing addresses hierarchically with a technique known 
as source routing. As another example, while the node API 
is fixed, language-level introspection can be used to query 
whether a new feature is available at the local node and if so 
gain access to it. This is a powerful mechanism for support- 
ing change, and ANTS includes the notion of extensions in 
its node API (Table 1) for this purpose. 

7 Architectural observations 

Active networks represent a different architectural perspec- 
tive than traditional layered protocol stacks. In this section, 
we offer somewhat more speculative observations on net- 
work architecture that we have made in the course of our 
work and that have not appeared in the literature to the best 
of our knowledge. 

7.1 Value of systematic change 

As we have experimented with ANTS, we have realized 
the value of a systematic means of upgrading protocol pro- 
cessing within the network, as opposed to depending on 
backwards-compatibility. ANTS makes the new process- 
ing that a capsule can undergo within the network explicit, 
while depending on backwards-compatibility implicitly ex- 
tends old processing. 

It is quite remarkable how effectively backwards- 
compatibility has been leveraged to extend TCP/IP to new 
situations. However, an implicit means of extension ulti- 
mately has unexpected or adverse side-effects, while an ex- 
plicit one has much cleaner semantics. This is already ap- 
parent in the case of NATs compared to IPv6, and we be- 
lieve that many more situations will come to light. For 
example, consider network-embedded Web caches, such as 
Cisco's CacheDirector, that are currently being developed. 
For reasons of backwards-compatibility, they work in a man- 
ner that is transparent to their clients, spoofing the remote 
Web server. This may pose no direct problems today. How- 
ever, research is now beginning to address how to share 
congestion information to improve the performance of short 
connections. In this context, transparent proxies have the 
potential to confuse hosts by mixing different congestion in- 
formation under one name. 

7.2 Dealing with heterogeneous nodes 

Implementing active nodes has forced us to reckon with the 
differing capabilities of nodes at different network locations. 
A difference in style between ANTS and IP that has emerged 
is in how we accommodate this heterogeneity. IP essentially 
defines the minimal forwarding required for internetwork- 
ing, with the expectation that this processing will run at all 
locations. On the other hand, in an active network we must 
confront the issue of different kinds and complexities of cap- 
sule processing running at different locations. 

Our strategy has been to bind capsule routines at runtime 
to those nodes that have sufficient forwarding resources to 
execute them. We do this in a clean manner by: using cap- 
sule code to query the node environment and decide if there 
are sufficient resources; having active nodes protect them- 
selves by unloading routines in the case that they take too 
long to run; and writing services that do not need to be run 
at all nodes to work correctly. IP routers then exist at the 
bottom of this organization as those nodes that are not active 
for any type of capsule. Architecturally, this strategy could 
be seen as the logical extension of the two-tier "edge and 
core" model recently in vogue with developments such as 
IETF Differentiated Services. 

7.3 End-to-end argument 

An initial concern of the active network approach was that 
it might conflict with the end-to-end argument [38, 6, 35]. 
With one exception, encryption, we have not found this to 
be the case, most likely because we view ANTS as simply a 
framework for expressing and deploying new services. The 
new services themselves can be well designed or poorly de- 
signed, depending on the skill of the developer. It is cer- 
tainly possible to construct services that do not conflict with 
the end-to-end argument (such as the multicast variants de- 
scribed in this paper) and features of our architecture (such 
as the provision of soft-storage) are intended to encourage 
good design. 

However, end-to-end encryption, such as that specified 
in IPv6 IPSEC, poses a challenge for the active network 
approach. When it is present, active code cannot readily 
operate on the packet payload. Two factors mitigate this 
problem. First, many ANTS services require access only 
to packet header fields, for example, routing variations. It 
is then possible to design encryption in a manner that ex- 
poses these fields. Second, end-to-end encryption that cov- 
ers the entire payload, such as IPSEC, precludes many useful 
network-embedded services that are already deployed, such 
as firewalls, transparent proxies, and wireless boosters. For 
this reason, variant encryption standards that expose header 
fields are likely to emerge. 

7.4 Localizing change 

We have come to appreciate that changes in network services 
must be localized in their implementation if they are to be 
easily deployed. This observation holds regardless of the 
protocol layer of the change, and whether they are effected 
by means of an active network or not. Much of the value of 
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the capsule model is that it allows changes to be made along 
an entire network path at one time, rather than at individual 
network locations. This new kind of locality greatly expands 
the scope of changes that can be made. 

Arguably, IPv6 is proving slow and difficult to intro- 
duce because its changes are not easily localized. Since it 
replaces rather than extends existing addresses, it logically 
needs to be deployed at all network locations before it can 
be used. This is clearly not feasible, and an overlay and 
complicated transition plans are necessary to avoid long pe- 
riods of restricted connectivity [15]. Conversely, NATs are 
rapidly gaining ground despite their drawbacks precisely be- 
cause they are easy to deploy with only local changes. It is 
interesting to speculate whether incrementally deployed so- 
lutions to Ipv6, such as PIP [14], would have enjoyed more 
S u c c e s s .  

8 Conclusions 

In this paper, we have reported substantial progress towards 
active networks as envisioned in [41]. In order to build a real, 
working system, we have revised some of the positions orig- 
inally put forth in [41]. Nevertheless, even after this healthy 
dose of reality, we find that a surprising amount of the origi- 
nal vision still holds sway: 

• Capsules have proved a worthwhile model because 
they provide a clean means of upgrading processing 
along an entire network path. This model of deploy- 
ment is considerably more powerful than the pointwise 
administrative upgrades that are the norm today. To 
implement capsules efficiently, we have come to de- 
pend on the demand loading of code and on traffic pat- 
terns for which code caching is effective. 

• We have partly succeeded in designing a network that 
any untrusted user can freely customize. We have man- 
aged to isolate different services from each other with- 
out trust or centralized control, but not to protect the 
network as a whole from untrusted services. To ac- 
complish the latter in the general case, we have fallen 
back on certification by a trusted authority until better 
solutions are found. This is a measure that runs counter 
to our vision but which still allows easy change relative 
to standards bodies today. 

• We have found the most compelling application of 
capsules to be network layer service evolution, rather 
than the migration of application code to locations 
within the network. We have found capsule code to 
be well-suited to the task of introducing many varia- 
tions of a service, and hence valuable for experimen- 
tation. We also speculate that capsule code will act in 
synergy with network embedded devices (caches and 
transcoders) that are deployed by other means, such 
that both will work more effectively together. 
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