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TCP Vegas: End to End Congestion 
Avoidance on a Global Internet 
Lawrence S. Brakmo, Student Member, IEEE, and Larry L. Peterson 

Abstruct- Vegas is an implementation of TCP that achieves 
between 37 and 71 % better throughput on the Internet, with one- 
fifth to one-half the losses, as compared to the implementation 
of TCP in the Reno distribution of BSD Unix. This paper 
motivates and describes the three key techniques employed by 
Vegas, and presents the results of a comprehensive experimental 
performance study-using both simulations and measurements 
on the Internet-f the Vegas and Reno implementations of TCP. 

I. INTRODUCTION 

EW would argue that one of TCP’s strengths lies in its F adaptive retransmission and congestion control mecha- 
nism, with Jacobson’s paper [7] providing the cornerstone of 
that mechanism. This paper attempts to go beyond this earlier 
work; to provide some new insights into congestion control, 
and to propose modifications to the implementation of TCP 
that exploit these insights. 

The tangible result of this effort is an implementation of 
TCP, based on modifications to the Reno implementation of 
TCP, that we refer to as TCP Vegas. This name is a take- 
off of earlier implementations of TCP that were distributed in 
releases of 4.3 BSD Unix known as Tahoe and Reno; we use 
Tahoe and Reno to refer to the TCP implementation instead 
of the Unix release. Note that Vegas does not involve any 
changes to the TCP specification; it is merely an alternative 
implementation that interoperates with any other valid imple- 
mentation of TCP. In fact, all the changes are confined to the 
sending side. 

The main result reported in this paper is that Vegas is able 
to achieve between 37 and 71% better throughput than Reno.’ 
Moreover, this improvement in throughput is not achieved by 
an aggressive retransmission strategy that effectively steals 
bandwidth away from TCP connections that use the current 
algorithms. Rather, it is achieved by a more efficient use of 
the available bandwidth. Our experiments show that Vegas 
retransmits between one-fifth and one-half as much data as 
does Reno. 
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‘We limit our discussion to Reno, which is both newer and better perform- 
ing than Tahoe. Section V-D discusses our results relative to newer versions 
of TCP-Berkeley Network Release 2 (BNR2) and BSD 4.4. 

This paper is organized as follows. Section I1 outlines the 
tools we used to measure and analyze TCP. Section 111 then 
describes the techniques employed by TCP Vegas, coupled 
with the insights that led us to the techniques. Section IV then 
presents a comprehensive evaluation of Vegas’ performance, 
including both simulation results and measurements of TCP 
running over the Internet. Finally, Section V discusses sev- 
eral relevant issues and Section VI makes some concluding 
remarks. 

11. TOOLS 

This section briefly describes the tools used to implement 
and analyze the different versions of TCP. All of the protocols 
were developed and tested under the University of Arizona’s 
2-kernel framework [6]. Our implementation of Reno was de- 
rived by retrofitting the BSD implementation into the 2-kernel. 
Our implementation of Vegas was derived by modifying Reno. 

A. Simulator 

Many of the results reported in this paper were obtained 
from a network simulator. Even though several good simu- 
lators are available+.g., REAL [12] and Netsim [5]-we 
decided to build our own simulator based on the 2-kernel. 
In this environment, actual 2-kernel protocol implementa- 
tions run on a simulated network. Specifically, the simu- 
lator supports multiple hosts, each running a full protocol 
stack (TEST/TCP/IP/ETH), and several abstract link behaviors 
(point-to-point connections and ethernets). Routers can be 
modeled either as a network node running the actual IP 
protocol code, or as an abstract entity that supports a particular 
queueing discipline (e.g., FIFO). 

The 2-kernel-based simulator provides a realistic setting 
for evaluating protocols+ach protocol is modeled by the 
actual C code that implements it rather than some more 
abstract specification. It is also trivial to move protocols 
between the simulator and the real world, thereby providing 
a comprehensive protocol design, implementation, and testing 
environment. 

One of the most important protocols available in the simu- 
lator is called TRAFFIC-it implements TCP Internet traffic 
based on tcplib [3]. TRAFFIC starts conversations with in- 
terarrival times given by an exponential distribution. Each 
conversation can be of type TELNET, FTP, NNTP, or SMTP, 
each of which expects a set of parameters. For example, 
FTP expects the following parameters: number of items to 
transmit, control segment size, and the item sizes. All of these 
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Fig. 1. TCP Reno trace examples. 

parameters are based on probability distributions obtained 
from traffic traces. Finally, each of these conversations runs 
on top of its own TCP connection. 

B. Truce Facility 

Early in this effort it became clear that we needed good 
facilities to analyze the behavior of TCP. We therefore added 
code to the x-kernel to trace the relevant changes in the 
connection state. We paid particular attention to keeping the 
overhead of this tracing facility as low as possible, so as 
to minimize the effects on the behavior of the protocol. 
Specifically, the facility writes trace data to memory, dumps 
it to a file only when the test is over, and keeps the amount 
of data associated with each trace entry small (8 bytes). 

We then developed various tools to analyze and display 
the tracing information. The rest of this section describes one 
such tool that graphically represents relevant features of the 
state of the TCP connection as a function of time. This tool 
outputs multiple graphs, each focusing on a specific set of 
characteristics of the connection state. Fig. 1 gives an example. 
Since we use graphs like this throughout the paper, we now 
explain how to read the graph in some detail. 

First, all TCP trace graphs have certain features in common, 
as illustrated in Fig. 2. The circled numbers in this figure are 
keyed to the following explanations: 

Hash marks on the x-axis indicate when an ACK was 
received. 
Hash marks at the top of the graph indicate when a 
segment was sent. 
The numbers on the top of the graph indicate when the 
nth kilobyte (KB) was sent. 
Diamonds on top of the graph indicate when the periodic 
coarse-grained timer fires. This does not imply a TCP 
timeout, just that TCP checked to see if any timeouts 
should happen. 
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Fig. 2. Common elements in TCP trace graphs. 

5) Circles on top of the graph indicate that a coarse-grained 
timeout occurred, causing a segment to be retransmitted. 

6) Solid vertical lines running the whole height of the graph 
indicate when a segment that is eventually retransmitted 
was originally sent, presumably because it was lost.2 No- 
tice that several consecutive segments are retransmitted 
in the example. 

In addition to this common information, each graph depicts 
more specific information. The bottom graph in Fig. 1 is 
the simplest-it shows the average sending rate, calculated 
from the last 12 segments. The top graph in Fig. 1 is more 
complicated-it gives the size of the different windows TCP 
uses for flow and congestion control. Fig. 3 shows these in 
more detail, again keyed by the following explanations: 

1)  The dashed line gives the threshold window. It is used 
during slow-start, and marks the point at which the 
congestion window growth changes from exponential to 
linear. 

2For simplicity, we sometimes say a segment was lost, even though all we 
know for sure is that the sender retransmitted it. 
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Fig. 3. TCP windows graph. 

2) The dark gray line gives the send window. It is the 
minimum of the sender’s buffer size and receiver’s 
advertised window, and defines an upper limit to the 
number of bytes sent but not yet acknowledged. 

3) The light gray line gives the congestion window. It is 
used for congestion control, and is also an upper limit 
to the number of bytes sent but not yet acknowledged. 

4) The thin line gives the actual number of bytes in transit 
at any given time, where by in transit we mean sent but 
not yet acknowledged. 

Since the window graph presents a lot of information, it is 
easy to get lost in the detail. To assist the reader in developing 
a better understanding of this graph, the Appendix presents a 
detailed description of the behavior depicted in Fig. 3. 

The graphs just described are obtained from tracing infor- 
mation saved by the protocol, and are, thus, available whether 
the protocol is running in the simulator or over a real network. 
The simulator itself also reports certain information, such as 
the rate, in KB/s, at which data is entering or leaving a host 
or a router. For a router, the traces also save the size of the 
queues as a function of time, and the time and size of segments 
that are dropped due to insufficient queue space. 

111. TECHNIQUES 

This section motivates and describes three techniques that 
Vegas employs to increase throughput and decrease losses. The 
first technique results in a more timely decision to retransmit 
a dropped segment. The second technique gives TCP the 
ability to anticipate congestion, and adjust its transmission 
rate accordingly. The final technique modifies TCP’s slow- 
start mechanism so as to avoid packet losses while trying to 
find the available bandwidth during the initial use of slow-start. 
The relationship between our techniques and those proposed 
elsewhere are also discussed in this section in the appropriate 
subsections. 

A. New Retransmission Mechanism 

Reno uses two mechanisms to detect and then retransmit lost 
segments. The original mechanism, which is part of the TCP 
specification, is the retransmit timeout. It is based on round trip 
time (RTT) and variance estimates computed by sampling the 

time between when a segment is sent and an ACK arrives. In 
BSD-based implementations, the clock used to time the round- 
trip “ticks” every 500 ms. Checks for timeouts also occur only 
when this coarse-grain clock ticks. The coarseness inherent in 
this mechanism implies that the time interval between sending 
a segment that is lost until there is a timeout and the segment is 
resent is generally much longer than necessary. For example, 
during a series of tests on the Internet, we found that for losses 
that resulted in a timeout it took Reno an average of 1100 ms 
from the time it sent a segment that was lost until it timed 
out and resent the segment, whereas less than 300 ms would 
have been the correct timeout interval had a more accurate 
clock been used. 

This unnecessarily large delay did not go unnoticed, and 
the Fast Retransmit and Fast Recovery mechanisms were 
incorporated into the Reno implementation of TCP (for a more 
detailed description see [ 151). Reno not only retransmits when 
a coarse-grain timeout occurs, but also when it receives n 
duplicate ACKs (n  is usually 3). Reno sends a duplicate ACK 
whenever it receives a new segment that it cannot acknowledge 
because it has not yet received all the previous segments. For 
example, if Reno receives segment 2 but segment 3 is dropped, 
it will send a duplicate ACK for segment 2 when segment 4 
arrives, again when segment 5 arrives, and so on. When the 
sender sees the third duplicate ACK for segment 2 (the one 
sent because the receiver had gotten segment 6) it retransmits 
segment 3. 

The Fast Retransmit and Fast Recovery mechanisms are 
very successful-they prevent more than half of the coarse- 
grain timeouts that occur on TCP implementations without 
these mechanisms. However, some of our early analysis indi- 
cated that eliminating the dependency on coarse-grain timeouts 
would result in at least a 19% increase in throughput. 

Vegas, therefore, extends Reno’s retransmission mecha- 
nisms as follows. First, Vegas reads and records the system 
clock each time a segment is sent. When an ACK arrives, 
Vegas reads the clock again and does the RTT calculation 
using this time and the timestamp recorded for the relevant 
segment. Vegas then uses this more accurate RTT estimate to 
decide to retransmit in the following two situations (a simple 
example is given in Fig. 4): 

When a duplicate ACK is received, Vegas checks to 
see if the difference between the current time and the 
timestamp recorded for the relevant segment is greater 
than the timeout value. If it is, then Vegas retransmits 
the segment without having to wait for n (3) duplicate 
ACKs. In many cases, losses are either so great or the 
window so small that the sender will never receive three 
duplicate ACKs, and therefore, Reno would have to rely 
on the coarse-grain timeout mentioned above. 
When a nonduplicate ACK is received, if it is the first or 
second one after a retransmission, Vegas again checks to 
see if the time interval since the segment was sent is larger 
than the timeout value. If it is, then Vegas retransmits the 
segment. This will catch any other segment that may have 
been lost previous to the retransmission without having 
to wait for a duplicate ACK. 
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Rcvd ACK for packet 10 (packets 11 and 12 are in transit) 
Send packet 13 (which is lost) 

Rcvd ACK for packet 11 
Send packet 14 

Rcvd ACK for packet 12 
Send packet 15 (which is also lost) 

Should have gotten ACK for packet 13 
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Rcvd dup ACK for packet 12 (due to packet 14) 
Vegas checks timestamp of packet 13 anddecides to retransmit it 
(Reno would need to wait for the 3rd duplicate ACK) 

Rcvd ACK for packets 13 and 14 
Since it is 1st or 2nd ACK after retransmission, 
V e g a  checks timestamp of packet 15 and decides to retraosmit it 
(Reno would need to wait for 3 new duplicate ACKS) 

In other words, Vegas treats the receipt of certain ACKs as a 
hint to check if a timeout should occur. Since it only checks for 
timeouts in rare occasions, the overhead is small. Notice that 
even though one could reduce the number of duplicate ACKs 
used to trigger the Fast Retransmit from 3 duplicate ACKs to 
either 2 or 1 ,  it is not recommended as it could result in many 
unnecessary retransmissions and because it makes assumptions 
about the likelihood that packets will be delivered out of order. 

The goal of the new retransmission mechanism is not 
just to reduce the time to detect lost packets from the third 
duplicate ACK to the first or second duplicate ACK-a small 
savings-but to detect lost packets even though there may be 
no second or third duplicate ACK. The new mechanism is 
very successful at achieving this goal, as it further reduces the 
number of coarse-grain timeouts in Reno by more than half.3 
Vegas still contains Reno’s coarse-grain timeout code in case 
the new mechanisms fail to recognize a lost segment. 

Related to making timeouts more timely, notice that the 
congestion window should only be reduced due to losses that 
happened at the current sending rate, and not due to losses 
that happened at an earlier, higher rate. In Reno, it is possible 
to decrease the congestion window more than once for losses 
that occurred during one RTT i n t e r ~ a l . ~  In contrast, Vegas only 
decreases the congestion window if the retransmitted segment 
was previously sent after the last decrease. Any losses that 
happened before the last window decrease do not imply that 
the network is congested for the current congestion window 
size, and therefore, do not imply that it should be decreased 
again. This change is needed because Vegas detects losses 
much sooner than Reno. 

B. Congestion Avoidance Mechanism 

TCP Reno’s congestion detection and control mechanism 
uses the loss of segments as a signal that there is congestion in 

‘This was tested on an implementation of Vegas which did not have 
the congestion avoidance and slow-start modification described later in this 
section. 

the network. It has no mechanism to detect the incipient stages 
of congestion-before losses occur-so they can be prevented. 
Reno is reactive, rather than proactive, in this respect. As 
a result, Reno needs to create losses to find the available 
bandwidth of the connection. This can be seen in Fig. 5, which 
shows the trace of a Reno connection sending 1 MB of data 
over the network configuration seen in Fig. 6, with no other 
traffic sources; i.e., only Host l a  sending to Host Ib. In this 
case, the router queue size is ten+ach packet is 1.4 KB-and 
the queuing discipline is FIFO. 

As seen in Fig. 5, Reno’s mechanism to detect the available 
bandwidth is to continually increase its window size, using 
up buffers along the connection’s path, until it congests the 
network and segments are lost. It then detects these losses and 
decreases its window size. Consequently, Reno is continually 
congesting the network and creating its own losses. These 
losses may not be expensive if the Fast Retransmit and Fast 
Recovery mechanisms catch them, as seen with the losses 
around 7 and 9 s, but by unnecessarily using up buffers at 
the bottleneck router it is creating losses for other connections 
sharing this router. 

As an aside, it is possible to set up the experiment in such a 
way that there are little or no losses. This is done by limiting 
the maximum window size such that it never exceeds the 
delay-bandwidth product of the connection plus the number 
of buffers at the bottleneck. This was done, for example, 
in [7].  However, this only works when one knows both the 
available bandwidth and the number of available buffers at 
the bottleneck. Given that one does not have this information 
under real conditions, we consider such experiments to be 
somewhat unrealistic. 

There are several previously proposed approaches for proac- 
tive congestion detection based on a common understanding of 
the network changes as it approaches congestion (an excellent 
development is given in [IO]).  These changes can be seen 
in Fig. 5 in the time interval from 4.5-7.5 s. One change 
is the increased queue size in the intermediate nodes of the 
connection, resulting in an increase of the RTT for each 
successive segment. Wang and Crowcroft’s DUAL algorithm 
[I71 is based on reacting to this increase of the round-trip 
delay. The congestion window normally increases as in Reno, 
but every two round-trip delays the algorithm checks to see if 
the current RTT is greater than the average of the minimum 
and maximum RTT’s seen so far. If it is, then the algorithm 
decreases the congestion window by one-eighth. 

Jain’s CARD (Congestion Avoidance using Round-trip De- 
lay) approach [lo] is based on an analytic derivation of a 
socially optimum window size for a deterministic network. 
The decision as to whether or not to change the current 
window size is based on changes to both the R’IT and the 
window size. The window is adjusted once every two round- 
trip delays based on the product (W’CridowSi~e,.,,.,..,~~ - 
WirrdowSize,~d) x ( RTTcvrrent - RTTold) as follows: if 
the result is positive, decrease the window size by one-eighth; 
if the result is negative or zero, increase the window size by 
one maximum segment size. Note that the window changes 

4This problem in the BSD versions of Reno has also been pointed out by during every adjustment, that is, it Oscillates around its Optimal 
Sally Floyd [4I. point. 

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore.  Restrictions apply. 



BRAKMO AND PETERSON: TCP VEGAS: END TO END CONGESTION AVOIDANCE ON A GLOBAL INTERNET 1469 

. . . . . . . . . . . . . . . .  
70 

Bo 
50 

40 

3 %  
20 

i o  
0 ..................... 

8'5 a!o 9'5 i d 0  . . .  : . . , e * . . . . . . .  
110 m w u o 6 6 o w J 7 7 o w J e s o  l i w - I t r l . ~ I  

lo00 - 
Wo- 

g E: 
I E: 
E 400- 
8 3w- 
m- 
loo - 

8'5 $0 9'5 ,do 

i o  

5 

4 

4 
2 .- 

I 
I 
0 

0 

Fig. 5. TCP Reno with no other traffic (throughput: 123 KB/s). 
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Fig. 6. Network configuration for simulations. 

Another change seen as the network approaches congestion 
is the flattening of the sending rate. Wang and Crowcroft's Tri- 
S scheme [16] takes advantage of this fact. Every RTT, they 
increase the window size by one segment and compare the 
throughput achieved to the throughput when the window was 
one segment smaller. If the difference is less than one-half the 
throughput achieved when only one segment was in transit-as 
was the case at the beginning of the connection-they decrease 
the window by one segment. Tri-S calculates the throughput 
by dividing the number of bytes outstanding in the network 
by the RTT. 

Vegas' approach is most similar to T i -S  in that it looks at 
changes in the throughput rate, or more specifically, changes 
in the sending rate. However, it differs from Tri-S in that it 
calculates throughputs differently, and instead of looking for 
a change in the throughput slope, it compares the measured 
throughput rate with an expected throughput rate. The basis 
for this idea can be seen in Fig. 5 in the region between 4 and 
6 s. As the window size increases we expect the throughput 
(or sending rate) to also increase. But the throughput cannot 

increase beyond the available bandwidth; beyond this point, 
any increase in the window size only results in the segments 
taking up buffer space at the bottleneck router. 

Vegas uses this idea to measure and control the amount of 
extra data this connection has in transit, where by extra data we 
mean data that would not have been sent if the bandwidth used 
by the connection exactly matched the available bandwidth 
of the network. The goal of Vegas is to maintain the "right" 
amount of extra data in the network. Obviously, if a connection 
is sending too much extra data, it will cause congestion. Less 
obviously, if a connection is sending too little extra data, it 
cannot respond rapidly enough to transient increases in the 
available network bandwidth. Vegas' congestion avoidance 
actions are based on changes in the estimated amount of extra 
data in the network, and not only on dropped segments. 

We now describe the algorithm in detail. Note that the 
algorithm is not in effect during slow-start. Vegas' behavior 
during slow-start is described in Section 111-C. 

First, define a given connection's BaseRTT to be the RTT of 
a segment when the connection is not congested. In practice, 
Vegas sets B a s e R P  to the minimum of all measured round 
trip times; it is commonly the RTT of the first segment sent 
by the connection, before the router queues increase due to 
traffic generated by this c~nnect ion .~  If we assume that we are 
not overflowing the connection, then the expected throughput 
is given by: 

Expected = WindowSizeIBaseRTT 

Although we do not know the exact value for the BaseRTT, our experience 
suggests our algorithm is not sensitive to small errors in the BaseRTT. 
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where Windowsize is the size of the current congestion win- 
dow, which we assume for the purpose of this discussion, to 
be equal to the number of bytes in transit. 

Second, Vegas calculates the current Actual sending rate. 
This is done by recording the sending time for a distinguished 
segment, recording how many bytes are transmitted between 
the time that segment is sent and its acknowledgment is 
received, computing the RTT for the distinguished segment 
when its acknowledgment arrives, and dividing the number of 
bytes transmitted by the sample RTT. This calculation is done 
once per round-trip time.6 

Third, Vegas compares Actual to Expected, and adjusts the 
window accordingly. Let Difi  = Expected - Actlid. Note 
that Diff is positive or zero by definition, since Actual > 
Expected implies that we need to change BaseRlT to the 
latest sampled RTT. Also define two thresholds, cy < j 3 ,  
roughly corresponding to having too little and too much extra 
data in the network, respectively. When Dzjj < cy, Vegas 
increases the congestion window linearly during the next RTT, 
and when DZfl > /j, Vegas decreases the congestion window 
linearly during the next RTT. Vegas leaves the congestion 
window unchanged when CY < DZfl < p. 

Intuitively, the farther away the actual throughput gets 
from the expected throughput, the more congestion there is 
in the network, which implies that the sending rate should 
be reduced. The 1) threshold triggers this decrease. On the 
other hand, when the actual throughput rate gets too close 
to the expected throughput, the connection is in danger of not 
utilizing the available bandwidth. The Q threshold triggers this 
increase. The overall goal is to keep between Q and [j extra 
bytes in the network. 

Because the algorithm, as just presented, compares the 
difference between the actual and expected throughput rates 
to the cy and /j thresholds, these two thresholds are defined 
in terms of KB/s. However, it is perhaps more accurate to 
think in terms of how many extra buffers the connection is 
occupying in the network. For example, on a connection with 
a BaseRTT of 100 ms and a segment size of 1 KB, if cy = 
30 KB/s and [I = 60 KB/s, then we can think of Q as saying 
that the connection needs to be occupying at least three extra 
buffers in the network, and p saying it should occupy no more 
than six extra buffers in the network. 

In practice, we express a and 0 in terms of buffers rather 
than extra bytes in transit. During linear increase/decrease 
mode-as opposed to the slow-start mode described be- 
low-we set CY to one and {j to three. This can be interpreted 
as an attempt to use at least one, but no more than three extra 
buffers in the connection. We settled on these values for cy 

and p as they are the smallest feasible values. We want Q 

to be greater than zero so the connection is using at least 
one buffer at the bottleneck router. Then, when the aggregate 
traffic from the other connections decreases (as is bound to 
happen every so often), our connection can take advantage of 

We have made every attempt to keep the overhead of Vegas’ congestion 
avoidance mechanism as small as possible. To help quantify this effect, we 
ran both Reno and Vegas between SparcStations connected by an Ethernet, 
and measured the penalty to be less than 5%. This overhead can be expected 
to drop as processors become faster. 

the extra available bandwidth immediately without having to 
wait for the one R I T  delay necessary for the linear increase 
to occur. We want [l to be two buffers greater than U so small 
sporadic changes in the available bandwidth will not create 
oscillations in the window size. In other words, the use of the 
cy - j 3  region provides a damping effect. 

Even though the goal of this mechanism is to avoid conges- 
tion by limiting the number of buffers used at the bottleneck, it 
may not be able to achieve this when there are a large number 
of “bulk data” connections going through a bottleneck with a 
small buffer size. However, Vegas will successfully limit the 
window growth of connections with smaller round-trip times. 
The mechanisms in Vegas are not meant to be the ultimate 
solution, but they represent a considerable enhancement to 
those in Reno. 

Fig. 7 shows the behavior of TCP Vegas when there is 
no other traffic present; this is the same condition that Reno 
ran under in Fig. 5.  There is one new type of graph in this 
figure, the third one, which depicts the congestion avoidance 
mechanism (CAM) used by Vegas. Once again, we use a 
detailed graph (Fig. 8) keyed to the following explanation: 

The small vertical line-once per RTT-shows the times 
when Vegas makes a congestion control decision; i.e., 
computes Actual and adjusts the window accordingly. 
The gray line shows the Expected throughput. This is 
the throughput we should get if all the bytes in transit 
are able to get through the connection in one BaseRTT. 
The solid line shows the Actual sending rate. We cal- 
culate it from the number of bytes we sent in the last 
RTT. 
The dashed lines are the thresholds used to control the 
size of the congestion window. The top line corresponds 
to the cy threshold and the bottom line corresponds to 
the p threshold. 

Fig. 9 shows a trace of a Vegas connection transferring 
one Mbyte of data, while sharing the bottleneck router with 
tcplib traffic. The third graph shows the output produced by 
the TRAFFIC protocol simulating the TCP traffic-the thin 
line is the sending rate in KB/s as seen in 100 ms intervals 
and the thick line is a running average (size 3). The bottom 
graph shows the output of the bottleneck link which has a 
maximum bandwidth of 200 KB/s. The figure clearly shows 
Vegas’ congestion avoidance mechanisms at work and how its 
throughput adapts to the changing conditions on the network. 
For example, as the background traffic increases at 3.7 s 
(third graph), the Vegas connection detects it and decreases 
its window size (top graph) which results in a reduction in 
its sending rate (second graph). When the background traffic 
slows down at 5, 6, and 7.5 s, the Vegas connection increases 
its window size, and correspondingly its sending rate. The 
bottom graph shows that most of the time there is a 100% 
utilization of the bottleneck link. 

In contrast, Fig. 10 shows the behavior of Reno under 
similar conditions. It shows that there is very little correlation 
between the window size and the level of background traffic. 
For example, as the background traffic increases at 3.7 s, 
the Reno connection keeps increasing its window size until 
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Fig. 8. Congestion detection and avoidance in Vegas. 

there is congestion. This results in losses, both to itself and 
to connections which are part of the background traffic. The 
graph only shows the first 10 s of the one Mbyte transfer; it 
took 14.2 s to complete the transfer. The bottom graph shows 
that there is under-utilization of the bottleneck link. 

The important thing to take away from this information 
is that Vegas' increased throughput is not a result of its 
taking bandwidth away from Reno connections, but due to a 
more efficient utilization of the bottleneck link. In fact, Reno 

connections do slightly better when the background traffic is 
running in top of Vegas as compared to when the traffic is 
running on top of Reno (see Section IV). 

C. Mod@ied Slow-Start Mechanism 

TCP is a "self-clocking" protocol, that is, it uses ACKs as 
a "clock" to strobe new packets into the network [7]. When 
there are no segments in transit, such as at the beginning of 
a connection or after a retransmit timeout, there will be no 
ACKs to serve as a strobe. Slow-start is a mechanism used 
to gradually increase the amount of data in-transit; it attempts 
to keep the segments uniformly spaced. The basic idea is to 
send only one segment when starting or restarting after a loss, 
then as the ACKs are received, to send an extra segment in 
addition to the amount of data acknowledged in the ACK. 
For example, if the receiving host sends an acknowledgment 
for each segment it receives, the sending host will send 1 
segment during the first RTT, 2 during the second RTT, 4 
during the third, and so on. It is easy to see that the increase 
is exponential, doubling its sending rate on each RTT. 

The behavior of the slow-start mechanism can be seen 
in Figs. 3 and 10. It occurs twice, once during the interval 
between 0-1 s, and again in the interval between 2-2.5 s; 
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Fig 9 TCP Vegas with tcphb-generated background traffic 

the latter after a coarse-grain timeout. The behavior of the 
initial slow-start is different from the ones that occur later 
in one important respect. During the initial slow-start, there 
is no a priori knowledge of the available bandwidth that 
can be used to stop the exponential growth of the window, 
whereas when slow-start occurs in the middle of a connection, 
there is the knowledge of the window size used when the 
losses occurred-Reno considers half of that value to be 
safe. 

Whenever a retransmit timeout occurs, Reno sets the thresh- 
old window to one half of the congestion window. The slow- 
start period ends when the exponentially increasing congestion 
window reaches the threshold window, and from then on, the 
increase is linear, or approximately one segment per RTT. 
Since the congestion window stops its exponential growth at 
half the previous value, it is unlikely that losses will occur 
during the slow-start period. 

However, there is no such knowledge of a safe window 
size when the connection starts. If the initial threshold window 
value is too small, the exponential increase will stop too early, 
and it will take a long time-by using the linear increase-to 
amve at the optimal congestion window size. As a result, 
throughput suffers. On the other hand, if the threshold window 

is set too large, the congestion window will grow until the 
available bandwidth is exceeded, resulting in losses on the 
order of the number of available buffers at the bottleneck 
router; these losses can be expected to grow as network 
bandwidth increases. 

What is needed is a way to find a connection's available 
bandwidth which does not incur these kinds of losses. Towards 
this end, we incorporated our congestion detection mechanism 
into slow-start with only minor modifications. To be able to 
detect and avoid congestion during slow-start, Vegas allows 
exponential growth only every other RTT. In between, the 
congestion window stays fixed so a valid comparison of the 
expected and actual rates can be made. When the actual 
rate falls below the expected rate by the equivalent of one 
router buffer, Vegas changes from slow-start mode to linear 
increaseldecrease mode. 

The behavior of the modified slow-start can be seen in 
Figs. 7 and 9. The reason that we need to measure the actual 
rate with a fixed congestion window is that we want the actual 
rate to represent the bandwidth allowed by the connection. 
Thus, we can only send as much data as is acknowledged 
in the ACK (during slow-start, Reno sends an extra segment 
for each ACK received). This mechanism is highly successful 
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Fig. 10. TCP Reno with fcplib-generated background traffic. 

at preventing the losses incurred during the initial slow-start 
period, as quantified in the next section. 

Two problems remain during any slow-start period. First, 
segments are sent at a rate higher than the available band- 
width-up to twice the available bandwidth, depending on 
the ACKing frequency (e.g., every segment or every two 
segments). This results on the bottleneck router having to 
buffer up to half of the data sent on each RTT, thereby 
increasing the likelihood of losses during the slow-start period. 
Moreover, as network speeds increase, so does the amount 
of buffering needed. Second, while Vegas' congestion avoid- 
ance mechanism during the initial slow-start period is quite 
effective, it can still overshoot the available bandwidth, and 
depends on enough buffering at the bottleneck router to prevent 
losses until realizing it needs to slow down. Specifically, if the 
connection can handle a particular window size, then Vegas 
will double that window size-and as a consequence, double 
the sending ra te -on  the next RTT. At some point the available 
bandwidth will be exceeded. 

We have experimented with a solution to both problems. To 
simplify the following discussion, we refer to the alternative 
version of Vegas with an experimental slow-start mechanism 
as Vegas*. Vegas* is based on using the spacing of the 

acknowledgments to gauge the available bandwidth. The idea 
is similar to Keshav's Packet-Pair probing mechanism [ 131, 
except that it uses the spacing of four segments sent during 
the slow-start period rather than two. (Using four segments 
results in a more robust algorithm than using two segments.) 
This available bandwidth estimate is used to set the threshold 
window with an appropriate value, which makes Vegas* less 
likely to overshoot the available bandwidth. 

Specifically, as each ACK is received, Vegas* schedules 
an event at a certain point in the future, based on its available 
bandwidth estimate, to increase the congestion window by one 
maximum segment size. This is in contrast to increasing the 
window immediately upon receiving the ACK. For example, 
assume the R I T  is 100 ms, the maximum segment size is 
1 KEiyte, and the available bandwidth estimate is currently 
200 KB/s. During the slow-start period, time is divided into 
intervals of length equal to one RTT. If during the current 
RTT interval we are expecting 4 ACKs to arrive, then Vegas* 
uses the bandwidth estimate (200 KB/s) to guess the spacing 
between the incoming ACKs ( 1  KB/200 KB/s = 5 ms) and 
as each ACK is received, it schedules an event to increase the 
congestion window (and to send a segment) at 20 ms (5 x 4) 
in the future. 
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Fig. 1 I .  TCP Vegas on the left, experimental on the right. 

The graphs in Fig. 11  show the behavior of Vegas (left) 
and Vegas* (right) during the initial slow-start. For this set 
of experiments, the available bandwidth was 300 KB/s and 
there were 16 buffers at the router. Looking at the graphs on 
the left, we see that a packet is lost at around 1 s (indicated 
by the thin vertical bar) as a result of sending at 400 KB/s. 
This is because Vegas detected no problems at 200 KB/s, so it 
doubled its sending rate, but in this particular case, there were 
not enough buffers to protect it from the losses. The bottom 
graph demonstrates the need to buffer half of the data sent on 
each RTT as a result of sending at a rate twice the available 
bandwidth. 

The graphs on the right illustrate the behavior of Vegas*. It 
sets the threshold window (dashed line) based on the available 
bandwidth estimate. This results in the congestion window 
halting its exponential growth at the right time-when the 
sending rate equals the available bandwidth and preventing 
the losses. The middle graph shows that the sending rate never 
exceeds the available bandwidth (300 KB/s) by much. Finally, 
the bottom graph shows that Vegas* does not need as many 
buffers as Vegas. 

Notice that while the available bandwidth estimate could 
be used to jump immediately to the available bandwidth by 
using rate control during one RTT interval, congestion would 
result if more than one connection did this at the same time. 
Even though it is possible to congest the network if more than 
one connection does slow-start at the same time, there is an 
upper bound on the number of bytes sent during the RTT when 
congestion occurs regardless of the number of connections 
simultaneously doing slow-start-about twice the number of 
bytes that can be handled by the connection. There is no such 

limit if more than one connection jumps to use the available 
bandwidth at once. Hence, we strongly recommend against 
doing this unless it is known a priori that there are no other 
connections sharing the path, or if there are, that they will not 
increase their sending rate at the same time. 

Although these traces illustrate how Vegas*'s experimental 
slow-start mechanism does in fact address the two problems 
with Vegas outlined above, simulation data indicates that 
the new mechanism does not have a measurable impact on 
throughput, and only marginally improves the loss rate. While 
additional simulations might expose situations where Vegas* 
is more beneficial, we have decided to not include these 
modifications in Vegas. Also, the results presented in Section 
IV are for Vegas, not Vegas*. 

IV. PERFORMANCE EVALUATION 

This section reports and analyzes the results from both the 
Internet and the simulator experiments. The results from the 
Internet experiments are evidence that Vegas' enhancements to 
Reno produce significant improvements on both the throughput 
(37% higher) and the number of losses (less than half) under 
real conditions. The simulator experiments, allow us to also 
study related issues such as how do Vegas connections affect 
Reno connections, and what happens when all connections are 
running over Vegas. Note that because it is simple to move a 
protocol between the simulator and the "real world," all the 
numbers reported in this section are for exactly the same code. 

A. Internet Results 

We first present measurements of TCP over the Inter- 
net. Specifically, we measured TCP transfers between the 
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Throughput (KB/s) 
Throughput Ratio 

TABLE I 
1 MByte TRANSFER OVER THE INTERNET 

Reno Vega-1,3 Vega-2.4 
53.00 72.50 75.30 

1 .00 1.37 1.42 - _  
1 RetransmissionsMBI I 47.80 I 24.50 I 29.30 I 

I ~. .. . , ,  
Retransmit Ratio I 1.00 I 0.51 I 0.61 
Coarse limeouts I 3.30 I 0.80 I 0.90 

TABLE I1 
EFFECTS OF TRANSFER SIZE OVER THE INTERNET 

Coarse Timeouts I 3.30 I 0.80 I 1.70 I 0.20 1 1.10 I 0.20 

University of Arizona (UA) and the National Institutes of 
Health (NIH). The connection consists of 17 hops, and passes 
through Denver, St. Louis, Chicago, Cleveland, New York, 
and Washington DC. The results are derived from a set of 
runs over a seven day period from January 23-29, 1994. Each 
run consists of a set of seven transfers from UA to NIH-Reno 
sends 1 MB, 512 KB, and 128 KB, a version of Vegas with 
a: = 1 and p = 3 (denoted Vegas-1,3) sends 1 MB, 512 KB, 
and 128 KB, and second version of Vegas with a: = 2 and 
@ = 4 (denoted Vegas-2,4) sends 1 MB. We inserted a 45 s 
delay between each transfer in a run to give the network a 
chance to settle down, a run started approximately once every 
hour, and we shuffled the order of the transfers within each 
run. 

Table I shows the results for the 1 MB transfers. Depending 
on the congestion avoidance thresholds, it shows between 
37 and 42% improvement over Reno’s throughput with only 
5 1 4 1 %  of the retransmissions. When comparing Vegas and 
Reno within each run, Vegas outperforms Reno 92% of the 
time and across all levels of congestion; i.e., during both the 
middle of the night and during periods of high load. Also, 
the throughput was a little higher with the bigger thresholds, 
since the Vegas connection used more buffers at the bottleneck 
router which could be used to fill bandwidth gaps occumng 
when the background traffic slowed down. However, the 
higher buffer utilization at the bottleneck also resulted in 
higher losses and slightly higher delays. We prefer the more 
conservative approach of using fewer resources, so have settled 
on avoidance thresholds of a = 1 and 

Because we were concerned that Vegas’ throughput im- 
provement depended on large transfer sizes, we also varied the 
size of the transfer. Table I1 shows the effect of transfer size 
on both throughput and retransmissions for Reno and Vegas- 
1,3. First, observe that Vegas does better relative to Reno as 
the transfer size decreases. In terms of throughput, we see an 
increase from 37-71%. The results are similar for retransmis- 
sions, as the relative number of Vegas retransmissions goes 
from 51% of Reno’s to 17% of Reno’s. 

Notice that the number of kilobytes retransmitted by Reno 
starts to flatten out as the transfer size decreases. When we 

= 3. 

decreased the transfer size by half, from 1 MB to 512 KB, we 
see a 42% decrease in the number of kilobytes retransmitted. 
When we further decrease the transfer size to one-fourth its 
previous value, from 512 KB to 128 KB, the number of 
kilobytes retransmitted only decreases by 18%. This indicates 
that we are approaching the average number of kilobytes 
retransmitted due to Reno’s slow-start losses. From these 
results, we conclude that there are around 20 KBs retransmitted 
during slow-start, for the conditions of our experiment. 

On the other hand, the number of kilobytes retransmitted 
by Vegas decreases almost linearly with respect to the transfer 
size. This indicates that Vegas eliminates nearly all losses 
during slow-start due to its modified slow-start with congestion 
avoidance. Note that if the transfer size is smaller than about 
twice the bandwidth-delay product, then there will be no losses 
for neither Vegas nor Reno (assuming the bottleneck router has 
enough buffers to absorb temporary sending rates above the 
connections available bandwidth). 

B. Simulation Results 

This subsection reports the results of series of experiments 
using the z-kernel based simulator. The simulator allows 
us to better control the experiment, and in particular, gives 
us the opportunity to see whether or not Vegas gets its 
performance at the expense of Reno-based connections. Note 
that all the experiments used in this subsection are on the 
network configuration shown in Fig. 6. We have also run 
other topologies and different bandwidth-delay parameters, 
with similar results. 

1) One-on-One Experiments: We begin by studying how 
two TCP connections interfere with each other. To do this, we 
start a 1 MB transfer, and then after a variable delay, start a 
300 KB transfer. The transfer sizes and delays are chosen to 
ensure that the smaller transfer is contained completely within 
the larger. 

Table I11 gives the results for the four possible combinations, 
where the column heading RenoNegas denotes a 300 KB 
transfer using Reno contained within a 1 Mbyte transfer using 
Vegas. For each combination, the table gives the measured 
throughput and number of kilobytes retransmitted for both 
transfers; e.g., in the case of RenoNegas, the 300 KB Reno 
transfer achieved a 61 KB/s throughput rate and the 1 Mbyte 
Vegas transfer achieved a 123 KB/s throughput rate.7 The 
ratios for both throughput rate and kilobytes retransmitted are 
relative to the Renomeno column. The values in the table are 
averages from 12 runs, using 15 and 20 buffers in the routers, 
and with the delay before starting the smaller transfer ranging 
between 0 and 2.5 s. 

The main thing to take away from these numbers is that 
Vegas does not adversely affect Reno’s throughput. Reno’s 
throughput stays pretty much unchanged when it is compet- 
ing with Vegas rather than itself-the ratios for Reno are 
1.02 and 1.09 for RenoNegas and Vegasmeno, respectively. 
Also, when Reno competes with Vegas rather than itself, 

7Comparing the small transfer to the large transfer in any given column is 
not meaningful. This is because the large transfer was able to run by itself 
during most of the test. 
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Throughput(KB/s) 
Throuahuut Ratios 

TABLE I11 
ONE-ON-ONE (300 KB AND 1 MB) TRANSFERS 

Reno/Reno RenoNegas VegadReno VegasNegas 
60/109 61/123 66/119 74/131 
1.00/1 .OO 1.02/1.13 1.10/1.09 1.23/1.20 

Throughput (KBls) 
Throughput Ratio 
Retransmissions (KBI 

I. 

Retransmissions(KB) I 30/22 I 43/13 1 1.5/18 I 0.310.1 
Retransmit Ratios I 1.00/1.00 I 1.43/0.08 1 0.05/0.82 I 0.01/0.01 

I I 

58.30 89.40 91.80 
1 .00 1.53 1.58 
55.40 27.10 29.40 

the combined number of kilobytes retransmitted for the pair 
of competing connections drops significantly. The combined 
RenoReno retransmits are 52 KB compared with 45 KB for 
RenoNegas and 19 KB for VegasReno. Finally, note that 
the combined VegasNegas retransmits are less than 1 KB 
on the average-an indication that the congestion avoidance 
mechanism is working. 

Since the probability that there are exactly two connections 
at one time is small in real life, we modified the experiment 
by adding fcplib background traffic. The results were similar 
except for the RenoNegas experiment in which Reno only 
had a 6% increase in its retransmission, versus the 43% when 
there was no background traffic. 

This 43% increase in the losses of Reno for the RenoNegas 
case is explained as follows. The Vegas connection starts first, 
and is using the full bandwidth (200 KB/s) by the time the 
Reno connection starts. When Vegas detects that the network 
is starting to get congested, it decreases its sending rate to 
between 80 and 100 KB/s. The losses incurred by Reno (about 
48 KB), are approximately the losses Reno experiences when 
it is running by itself on a network with 100-120 KB/s of 
available bandwidth and around 15 available buffers at the 
bottleneck router. The reason the losses were smaller for the 
300 KB transfer in the RenoReno experiment is that by the 
time the 300 KB transfer starts, the 1 MB connection has 
stopped transmitting due to the losses in its slow-start, and it 
will not start sending again until it times out at around 2 s. 
A Reno connection sending 300 KB when there is 200 KB/s 
of available bandwidth and 20 buffers at the bottleneck router 
only losses about 3 KB. 

This type of behavior is characteristic of Reno: by slightly 
changing the parameters in the network, one can observe major 
changes in Reno’s behavior. Vegas, on the other hand, does 
not show as much discontinuity in its behavior. 

2 )  Background TrafJic: We next measured the performance 
of a distinguished TCP connection when the network is 
loaded with traffic generated from tcplib. That is, the protocol 
TRAFFIC is running between Host l a  and Host Ib in Fig. 6, 
and a 1 Mbyte transfer is running between Host 2a and Host 
2b. In this set of experiments, the tcplib traffic is running over 
Reno. 

Table IV gives the results for Reno and two versions 
of Vegas-Vegas-1,3 and Vegas-2,4. We varied these two 
thresholds to study the sensitivity of our algorithm to them. 
The numbers shown are averages from 57 runs, obtained by 
using different seeds for tcplib, and by using 10, 15, and 20 
buffers in the routers. 

The table shows the throughput rate for each of the dis- 
tinguished connections using the three protocols, along with 
their ratio to Reno’s throughput. It also gives the number of 

TABLE IV 
1 MByte TRANSFER WITH fcpiib-GENERATED BACKGROUND RENO TRAFFIC 

I I Reno I Veaas-1.3 I Veaas-2.4 I 

. .  
Retransmit Ratio I 1.00 I 0.49 I 0.53 
Coarse Timeouts I 5.60 I 0.90 I 0.90 

kilobytes retransmitted, the ratio of retransmits to Reno’s, and 
the average number of coarse-grained timeouts per transfer. 
For example, Vegas-l,3 had 53% better throughput than Reno, 
with only 49% of the losses. Again note that there is little 
difference between Vegas- 1,3 and Vegas-2,4. 

These simulations tell us the expected improvement of 
Vegas over Reno: more than 50% improvement on throughput, 
and only half the losses. The results from the one-on-one 
experiments indicate that the gains of Vegas are not made at 
the expense of Reno; this belief is further supported by the fact 
that the background traffic’s throughput is mostly unaffected 
by the type of connection doing the 1 Mbyte transfer. 

We also ran these tests with the background traffic using 
Vegas rather than Reno. This simulates the situation where 
the whole world uses Vegas. The throughput and the kilo- 
bytes retransmitted by the 1 Mbyte transfers did not change 
significantly (less than 4%). 

3 )  Other Experiments: We tried many variations of the 
previous experiments. On the whole, the results were similar, 
except for when we changed TCP’s send-buffer size. Below 
we summarize these experiments and their results. 

Two- Way Background Traffic: There have been reports of 
change in TCP’s behavior when the background traffic is 
two-way rather than one-way [18]. Thus, we modified 
the experiments by adding tcplib traffic from Host 3b 
to Host 3a. The throughput ratio stayed the same, but 
the loss ratio was much better: 0.29. Reno resent more 
data and Vegas remained about the same. The fact that 
there was not much change is probably due to the fact 
that tcplib already creates some 2-way traffic-TELNET 
connections send one byte and get one or more bytes 
back, and FTP connections send and get control packets 
before doing a transfer. 
Different TCP Send-Buffer Sizes: For all the experiments 
reported so far, we ran TCP with a 50 KB send-buffer. 
For this experiment, we tried send-buffer sizes between 
50 KB and 5 KB. Vegas’ throughput and losses stayed 
unchanged between 50 KB and 20 KB; from that point 
on, as the buffer decreased, so did the throughput. This 
was due to the protocol not being able to keep the pipe 
full. 

Reno’s throughput initially increased as the buffers got 
smaller, and then it decreased. It always remained under 
the throughput measured for Vegas. We have previously 
seen this type of behavior while running Reno on the 
Internet. If we look back at Fig. 5, we see that as Reno 
increases its congestion window, it uses more and more 
buffers in the router until it loses packets by overrunning 
the queue. If we limit the congestion window by reducing 
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the size of the send-buffer, we may prevent it from 
overrunning the router’s queue. 

V. DISCUSSION 

Throughput and losses are not the only metrics by which a 
transport protocol is evaluated. This section discusses several 
other issues that must be addressed. It also comments on the 
relationship between this work and other efforts to improve 
end-to-end performance on the Internet. 

A. Fairness 

If there is more than one connection sharing a bottleneck 
link, we would like for each connection to receive an equal 
share of the bandwidth. Unfortunately, given the limited 
amount of information currently available at the connection 
endpoints, this is unlikely to happen without some help from 
the routers. Given that no protocol is likely to be perfectly 
fair, we need a way to decide whether its level of fairness 
is acceptable or not. Also, given that so far the Internet 
community has found Reno’s level of fairness acceptable, we 
decided to compare Vegas’ fairness levels to Reno’s and judge 
it in those terms. 

Before there can be any comparisons, we need a metric. 
We decided to use Jain’s fairness index [ 1 13, which is defined 
as follows: given a set of throughputs (21, 2 2 ,  . . , 2,) the 
following function assigns a fairness index to the set: 

/ n  \ 2  

Given that the throughputs are nonnegative, the fairness index 
always results in numbers between 0 and 1. If all throughputs 
are the same, the fairness index is 1. If only IC of the n users 
receive equal throughput and the remaining n - IC users receive 
zero throughput, the fairness index is k / n .  

We ran simulations with 2, 4, and 16 connections sharing a 
bottleneck link, where all the connections either had the same 
propagation delay, or where one half of the connections had 
twice the propagation delay of the other half. Many different 
propagation delays were used, with the appropriate results 
averaged. 

In the case of 2 and 4 connections, with each connection 
transferring 8 MB, Reno was slightly more fair than Vegas 
when all connections had the same propagation delay (0.993 
versus 0.989), but Vegas was slightly more fair than Reno 
when the propagation delay was larger for half of the con- 
nections (0.962 versus 0.953). In the experiments with 16 
connections, with each connection transferring 2 MB, Vegas 
was more fair than Reno in all experiments regardless of 
whether the propagation delays were the same or not (0.972 
versus 0.921). 

To study the effect that Reno connections have over Vegas 
connections (and vice versa) we ran 8 connections, each 
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sending 2 MB of data. The experiment consisted of running 
all the connections on top of Reno, all the connections on top 
of Vegas, or one half on top on Reno and the other half on 
top of Vegas. There was little difference between the fairness 
index of the eight connections running a particular TCP 
implementation (Vegas or Reno) and the fairness index of the 
four connections running the same TCP implementation and 
sharing the bottleneck with the four connections running the 
other TCP implementation. Similarly, we saw little difference 
in the average size of the bottleneck queue. 

In another experiment, we ran four connections over back- 
ground traffic. For this experiment, Vegas was always more 
fair than Reno. Overall, we conclude that Vegas is no less fair 
than Reno. 

B. Stability 

A second concern is stability-it is undesirable for a pro- 
tocol to cause the Internet to collapse as the number of 
connections increases. In other words, as the load increases, 
each connection must recognize that it should decrease its 
sending rate. Up to the point where the window can be 
greater than one maximum segment size, Vegas is much better 
than Reno at recognizing and avoiding congestion-we have 
already seen that Reno does not avoid congestion, on the 
contrary, it periodically creates congestion. 

Once the load is so high that on average each connection 
can only send less than one maximum segment’s worth of 
data, Vegas behaves like Reno. This is because this extreme 
condition implies that coarse-grain timeouts are involved, 
and Vegas uses exactly the same coarse-grain mechanism as 
Reno. Experimental results confirm this intuition: running 16 
connections, with a 50 ms one-way propagation delay, through 
a router with either 10 or 20 buffers and 100 or 200 KB/s of 
bandwidth produced no stability problems. 

We have also simulated complex network topologies like 
the one shown in Fig. 12, which consists of 16 traffic sources 
each of which contains two or three hosts. Each host, in turn, 
is running tcplib-based traffic. The rectangular boxes represent 
sources of “bulk data” transfers. The resulting traffic consists 
of nearly a thousand new connections being established per 
simulated second, where each connection is either a TELNET, 
FTP, SMTP, or “’I” conversation. No stability problems 
have occurred in any of our simulations when all of the 
connections are running Vegas. 

In summary, there is no reason to expect Vegas to lead 
to network collapse. One reason for this is that most of 
Vegas’ mechanisms are conservative in nature-its congestion 
window never increases faster than Reno’s (one maximum 
segment per RTT), the purpose of the congestion avoidance 
mechanism is to decrease the congestion window before losses 
occur, and during slow-start, Vegas stops the exponential 
growth of its congestion window before Reno would under 
the same conditions. 

C. Queue Behavior 

Given that Vegas purposely tries to occupy between one and 
three extra buffers along the path for each connection, it seems 
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possible that persistent queues could form at the bottleneck 
router if the whole world ran Vegas. These persistent queues 
would, in turn, add to the latency of all connections that 
crossed that router. 

Since the analytical tools currently available are not good 
enough to realistically model and analyze the behavior of 
either Reno or Vegas, we must rely on simulations to answer 
this issue. Our simulations show that average queue sizes 
under Reno and Vegas are approximately the same. However, 
they also show that TELNET connections in tcplib experience 
between 18 and 40% less latency, on average, when all the 
connections are Vegas instead of Reno. This seems to suggest 
that if the whole world ran Vegas, Internet latency would not 
be adversely affected. 

D. BSD Variations 

TCP has been a rather fluid protocol over the last several 
years, especially in its congestion control mechanism. Al- 
though the general form the original mechanism described in 
[7] has remained unchanged in all BSD-based implementations 
(e.g., Tahoe, Reno, BNR2, BSD 4.4), many of the “constants” 
have changed. For example, some implementations ACK every 
segment and some ACK every other segment; some increase 
the window during linear growth by one segment per RTT 
and some increase by half a segment per RTT plus 1/8th the 
maximum segment size per ACK received during that RTT; 
and finally, some use the timestamp option and some do not. 

We have experimented with most of these variations and 
have found the combination used in our version of Reno, as 
reported in this paper, to be the among the most effective. 
For example, we found the latest version of TCP, that found 
in BSD 4.4-lite,’ achieves 14% worse throughput than our 
Reno during Internet type simulations [2]. Also, others [ l ]  
have compared Vegas with the SunOS implementation of TCP, 
which is derived from Reno, and have reached conclusions 
similar to those in this paper. 

8This is the implementation of TCP available at ftp.cdrom.com, dated 
4/10/94. 

E. Alternative Approaches 

In addition to improving TCP’s congestion control mecha- 
nism, there is a large body of research addressing the general 
question of how to fairly and effectively allocate resources 
in the Internet. We conclude this section by discussing the 
relevance of TCP Vegas to these other efforts. 

One example gaining much attention is the question of 
how to guarantee bandwidth to real-time connections. The 
basic approach requires that a more intelligent buffer manager 
be placed in the Internet routers [14]. One might question 
the relevance of TCP Vegas in light of such mechanisms. 
We believe end-to-end congestion control will remain very 
important for two reasons. First, a significant fraction of the 
data that will flow over the Internet will not be of a real- 
time nature; it will be bulk-transfer applications (e.g., image 
transfer) that want as much bandwidth as is currently available. 
These transfers will be able to use Vegas to compete against 
each other for the available bandwidth. Second, even for a 
real-time connection, it would not be unreasonable for an 
application to request (and pay for) a minimally acceptable 
bandwidth guarantee, and then use a Vegas-like end-to-end 
mechanism to acquire as much additional bandwidth as the 
current load allows. 

As another example, selective ACKs [8], [9] have been 
proposed as a way to decrease the number of unnecessarily 
retransmitted packets and to provide information for a better 
retransmit mechanism than the one in Reno. Although the 
selective ACK mechanism is not yet well defined, we make 
the following observations about how it compares to Vegas. 
First, it only relates to Vegas’ retransmission mechanism; 
selective ACKs by themselves affect neither the congestion 
nor the slow-start mechanisms. Second, there is little reason 
to believe that selective ACKs can significantly improve on 
Vegas in terms of unnecessary retransmissions, as there were 
only 6 KB per MB unnecessarily retransmitted by Vegas in 
our Internet experiments. Third, selective ACKs have the 
potential to retransmit lost data sooner on future networks 
with large delayhandwidth products. It would be interesting 
to see how Vegas and the selective ACK mechanism work 
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in tandem on such networks. Finally, we note that selective 
ACKs require a change to the TCP standard, whereas the Vegas 
modifications are an implementation change that is isolated to 
the sender. 

VI. CONCLUSIONS 

We have introduced several techniques for improving TCP, 
including a new timeout mechanism, a novel approach to 
congestion avoidance that tries to control the number of extra 
buffers the connection occupies in the network, and a modified 
slow-start mechanism. Experiments on both the Internet and 
using a simulator show that Vegas achieves 37-7 1 % better 
throughput, with one-fifth to one-half as many bytes being 
retransmitted, as compared to the implementation of TCP 
in the Reno distribution of BSD Unix. We have also given 
evidence that Vegas is just as fair as Reno, that it does not 
suffer from stability problems, and that it does not adversely 
affect latency. 

APPENDIX 
DETAILED GRAPH DESCRIPTION 

To assist the reader in developing a better understanding of 
the graphs used throughout this paper, and to gain a better 
insight of Reno’s behavior, we describe in detail one of these 
graphs. Fig. 13 is a trace of Reno when there is other traffic 
through the bottleneck router. The numbers in parenthesis refer 
to the type of line in the graph. 

In general, output is allowed while the UNACK-COUNT 
(4) (number of bytes sent but not acknowledged) is less than 
the congestion window (3) and less than the send window (2). 
The purpose of the congestion window is to prevent, or more 
realistically in Reno’s case, to control congestion. The send 
window is used for flow control, it prevents data from being 
sent when there is no buffer space available at the receiver. 

The threshold window (1) is set to the maximum value 
(64 KB) at the beginning of the connection. Soon after the 
connection is started, both sides exchange information on the 
size of their receive buffers, and the send window (2) is set to 
the minimum of the sender’s send buffer size and the receiver’s 
advertised window size. 

The congestion window (3) increases exponentially while it 
is less than the threshold window (1). At 0.75 s, losses start to 

occur (indicated by the tall vertical lines). More precisely, the 
vertical lines represent segments that are later retransmitted 
(usually because they were lost). At around 1 s, a loss is 
detected after receiving 3 duplicate ACKs and Reno’s Fast 
Retransmit and Fast Recovery mechanisms go into action. 
The purpose of these mechanisms is to detect losses before 
a retransmit timeout occurs, and to keep the pipe full (we 
can think of a connection’s path as a water pipe, and our 
goal is to keep it full of water) while recovering from these 
losses. 

The congestion window (3) is set to the maximal allowed 
segment size (for this connection) and the UNACK-COUNT 
is set to zero momentarily, allowing the lost segment to be 
retransmitted. The threshold window (1) is set to half the value 
that the congestion window had before the losses (it is assumed 
that this is a safe level, that losses won’t occur at this window 
size). 

The congestion window (3) is also set to this value after 
retransmitting the lost segment, but it increases with each 
duplicate ACK (segments whose acknowledgment number is 
the same as previous segments and carry no data or new 
window information). Since the receiver sends a duplicate 
ACK when it receives a segment that it cannot acknowledge 
(because it has not received all previous data), the reception 
of a duplicate ACK implies that a packet has left the pipe. 

This implies that the congestion window (3) will reach the 
UNACK-COUNT (4) when half the data in transit has been 
received at the other end. From this point on, the reception of 
any duplicate ACKs will allow a segment to be sent. This way 
the pipe can be kept full at half the previous value (since losses 
occurred at the previous value, it is assumed that the available 
bandwidth is now only half its previous value). Earlier versions 
of TCP would begin the slow-start mechanism when losses 
were detected. This implied that the pipe would almost empty 
and then fill up again. Reno’s mechanism allows it to stay 
filled. 

At around 1.2 s, a nonduplicate ACK is received, and the 
congestion window (3) is set to the value of the threshold 
window (1). The congestion window was temporarily inflated 
when duplicate ACKs were received as a mechanism for 
keeping the pipe full. When a nonduplicate ACK is received, 
the congestion window is reset to half the value it had when 
losses occurred. 

Since the congestion window (3) is below the UNACK- 
COUNT (4), no more data can be sent. At 2 s, a retransmit 
timeout occurs (see black circle on top), and data starts to 
flow again. The congestion window (3) increases exponentially 
while it is below the threshold window (1). A little before 2.5 
s, a segment is sent that will later be retransmitted. Skipping 
to 3 s, we notice the congestion window (3) increasing linearly 
because it is above the threshold window (1). 
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