
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995 1465

TCP Vegas: End to End Congestion
Avoidance on a Global Internet
Lawrence S. Brakmo, Student Member, IEEE, and Larry L. Peterson

Abstruct- Vegas is an implementation of TCP that achieves
between 37 and 71 % better throughput on the Internet, with one-
fifth to one-half the losses, as compared to the implementation
of TCP in the Reno distribution of BSD Unix. This paper
motivates and describes the three key techniques employed by
Vegas, and presents the results of a comprehensive experimental
performance study-using both simulations and measurements
on the Internet-f the Vegas and Reno implementations of TCP.

I. INTRODUCTION

EW would argue that one of TCP’s strengths lies in its F adaptive retransmission and congestion control mecha-
nism, with Jacobson’s paper [7] providing the cornerstone of
that mechanism. This paper attempts to go beyond this earlier
work; to provide some new insights into congestion control,
and to propose modifications to the implementation of TCP
that exploit these insights.

The tangible result of this effort is an implementation of
TCP, based on modifications to the Reno implementation of
TCP, that we refer to as TCP Vegas. This name is a take-
off of earlier implementations of TCP that were distributed in
releases of 4.3 BSD Unix known as Tahoe and Reno; we use
Tahoe and Reno to refer to the TCP implementation instead
of the Unix release. Note that Vegas does not involve any
changes to the TCP specification; it is merely an alternative
implementation that interoperates with any other valid imple-
mentation of TCP. In fact, all the changes are confined to the
sending side.

The main result reported in this paper is that Vegas is able
to achieve between 37 and 71% better throughput than Reno.’
Moreover, this improvement in throughput is not achieved by
an aggressive retransmission strategy that effectively steals
bandwidth away from TCP connections that use the current
algorithms. Rather, it is achieved by a more efficient use of
the available bandwidth. Our experiments show that Vegas
retransmits between one-fifth and one-half as much data as
does Reno.

Manuscript received September 29, 1994; revised June 7, 1995. This work
was supported in part by the National Science Foundation under Grant IRI-
9015407 and by ARPA under Contract DABT63-91-C-0030.

The authors are with the Department of Computer Science, University of
Arizona, Tucson, AZ 85721 USA.

IEEE Log Number 9414021.

‘We limit our discussion to Reno, which is both newer and better perform-
ing than Tahoe. Section V-D discusses our results relative to newer versions
of TCP-Berkeley Network Release 2 (BNR2) and BSD 4.4.

This paper is organized as follows. Section I1 outlines the
tools we used to measure and analyze TCP. Section 111 then
describes the techniques employed by TCP Vegas, coupled
with the insights that led us to the techniques. Section IV then
presents a comprehensive evaluation of Vegas’ performance,
including both simulation results and measurements of TCP
running over the Internet. Finally, Section V discusses sev-
eral relevant issues and Section VI makes some concluding
remarks.

11. TOOLS

This section briefly describes the tools used to implement
and analyze the different versions of TCP. All of the protocols
were developed and tested under the University of Arizona’s
2-kernel framework [6]. Our implementation of Reno was de-
rived by retrofitting the BSD implementation into the 2-kernel.
Our implementation of Vegas was derived by modifying Reno.

A. Simulator

Many of the results reported in this paper were obtained
from a network simulator. Even though several good simu-
lators are available+.g., REAL [12] and Netsim [5]-we
decided to build our own simulator based on the 2-kernel.
In this environment, actual 2-kernel protocol implementa-
tions run on a simulated network. Specifically, the simu-
lator supports multiple hosts, each running a full protocol
stack (TEST/TCP/IP/ETH), and several abstract link behaviors
(point-to-point connections and ethernets). Routers can be
modeled either as a network node running the actual IP
protocol code, or as an abstract entity that supports a particular
queueing discipline (e.g., FIFO).

The 2-kernel-based simulator provides a realistic setting
for evaluating protocols+ach protocol is modeled by the
actual C code that implements it rather than some more
abstract specification. It is also trivial to move protocols
between the simulator and the real world, thereby providing
a comprehensive protocol design, implementation, and testing
environment.

One of the most important protocols available in the simu-
lator is called TRAFFIC-it implements TCP Internet traffic
based on tcplib [3]. TRAFFIC starts conversations with in-
terarrival times given by an exponential distribution. Each
conversation can be of type TELNET, FTP, NNTP, or SMTP,
each of which expects a set of parameters. For example,
FTP expects the following parameters: number of items to
transmit, control segment size, and the item sizes. All of these

0733-8716/95$04.00 0 1995 IEEE

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

1466 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

e 0

Ma I I I I t
* * . * * * . * . . * . * . .

0

e *

0

Fig. 1. TCP Reno trace examples.

parameters are based on probability distributions obtained
from traffic traces. Finally, each of these conversations runs
on top of its own TCP connection.

B. Truce Facility

Early in this effort it became clear that we needed good
facilities to analyze the behavior of TCP. We therefore added
code to the x-kernel to trace the relevant changes in the
connection state. We paid particular attention to keeping the
overhead of this tracing facility as low as possible, so as
to minimize the effects on the behavior of the protocol.
Specifically, the facility writes trace data to memory, dumps
it to a file only when the test is over, and keeps the amount
of data associated with each trace entry small (8 bytes).

We then developed various tools to analyze and display
the tracing information. The rest of this section describes one
such tool that graphically represents relevant features of the
state of the TCP connection as a function of time. This tool
outputs multiple graphs, each focusing on a specific set of
characteristics of the connection state. Fig. 1 gives an example.
Since we use graphs like this throughout the paper, we now
explain how to read the graph in some detail.

First, all TCP trace graphs have certain features in common,
as illustrated in Fig. 2. The circled numbers in this figure are
keyed to the following explanations:

Hash marks on the x-axis indicate when an ACK was
received.
Hash marks at the top of the graph indicate when a
segment was sent.
The numbers on the top of the graph indicate when the
nth kilobyte (KB) was sent.
Diamonds on top of the graph indicate when the periodic
coarse-grained timer fires. This does not imply a TCP
timeout, just that TCP checked to see if any timeouts
should happen.

Y

70
60

50
40

30
20
10

0

5
l ime in seconds

Fig. 2. Common elements in TCP trace graphs.

5) Circles on top of the graph indicate that a coarse-grained
timeout occurred, causing a segment to be retransmitted.

6) Solid vertical lines running the whole height of the graph
indicate when a segment that is eventually retransmitted
was originally sent, presumably because it was lost.2 No-
tice that several consecutive segments are retransmitted
in the example.

In addition to this common information, each graph depicts
more specific information. The bottom graph in Fig. 1 is
the simplest-it shows the average sending rate, calculated
from the last 12 segments. The top graph in Fig. 1 is more
complicated-it gives the size of the different windows TCP
uses for flow and congestion control. Fig. 3 shows these in
more detail, again keyed by the following explanations:

1) The dashed line gives the threshold window. It is used
during slow-start, and marks the point at which the
congestion window growth changes from exponential to
linear.

2For simplicity, we sometimes say a segment was lost, even though all we
know for sure is that the sender retransmitted it.

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

BRAKMO AND PETERSON: TCP VEGAS: END TO END CONGESTION AVOIDANCE ON A GLOBAL INTERNET 1467

m
Y

70

60
50
40

30
20

10

0

e

..... _........_

Fig. 3. TCP windows graph.

2) The dark gray line gives the send window. It is the
minimum of the sender’s buffer size and receiver’s
advertised window, and defines an upper limit to the
number of bytes sent but not yet acknowledged.

3) The light gray line gives the congestion window. It is
used for congestion control, and is also an upper limit
to the number of bytes sent but not yet acknowledged.

4) The thin line gives the actual number of bytes in transit
at any given time, where by in transit we mean sent but
not yet acknowledged.

Since the window graph presents a lot of information, it is
easy to get lost in the detail. To assist the reader in developing
a better understanding of this graph, the Appendix presents a
detailed description of the behavior depicted in Fig. 3.

The graphs just described are obtained from tracing infor-
mation saved by the protocol, and are, thus, available whether
the protocol is running in the simulator or over a real network.
The simulator itself also reports certain information, such as
the rate, in KB/s, at which data is entering or leaving a host
or a router. For a router, the traces also save the size of the
queues as a function of time, and the time and size of segments
that are dropped due to insufficient queue space.

111. TECHNIQUES

This section motivates and describes three techniques that
Vegas employs to increase throughput and decrease losses. The
first technique results in a more timely decision to retransmit
a dropped segment. The second technique gives TCP the
ability to anticipate congestion, and adjust its transmission
rate accordingly. The final technique modifies TCP’s slow-
start mechanism so as to avoid packet losses while trying to
find the available bandwidth during the initial use of slow-start.
The relationship between our techniques and those proposed
elsewhere are also discussed in this section in the appropriate
subsections.

A. New Retransmission Mechanism

Reno uses two mechanisms to detect and then retransmit lost
segments. The original mechanism, which is part of the TCP
specification, is the retransmit timeout. It is based on round trip
time (RTT) and variance estimates computed by sampling the

time between when a segment is sent and an ACK arrives. In
BSD-based implementations, the clock used to time the round-
trip “ticks” every 500 ms. Checks for timeouts also occur only
when this coarse-grain clock ticks. The coarseness inherent in
this mechanism implies that the time interval between sending
a segment that is lost until there is a timeout and the segment is
resent is generally much longer than necessary. For example,
during a series of tests on the Internet, we found that for losses
that resulted in a timeout it took Reno an average of 1100 ms
from the time it sent a segment that was lost until it timed
out and resent the segment, whereas less than 300 ms would
have been the correct timeout interval had a more accurate
clock been used.

This unnecessarily large delay did not go unnoticed, and
the Fast Retransmit and Fast Recovery mechanisms were
incorporated into the Reno implementation of TCP (for a more
detailed description see [151). Reno not only retransmits when
a coarse-grain timeout occurs, but also when it receives n
duplicate ACKs (n is usually 3). Reno sends a duplicate ACK
whenever it receives a new segment that it cannot acknowledge
because it has not yet received all the previous segments. For
example, if Reno receives segment 2 but segment 3 is dropped,
it will send a duplicate ACK for segment 2 when segment 4
arrives, again when segment 5 arrives, and so on. When the
sender sees the third duplicate ACK for segment 2 (the one
sent because the receiver had gotten segment 6) it retransmits
segment 3.

The Fast Retransmit and Fast Recovery mechanisms are
very successful-they prevent more than half of the coarse-
grain timeouts that occur on TCP implementations without
these mechanisms. However, some of our early analysis indi-
cated that eliminating the dependency on coarse-grain timeouts
would result in at least a 19% increase in throughput.

Vegas, therefore, extends Reno’s retransmission mecha-
nisms as follows. First, Vegas reads and records the system
clock each time a segment is sent. When an ACK arrives,
Vegas reads the clock again and does the RTT calculation
using this time and the timestamp recorded for the relevant
segment. Vegas then uses this more accurate RTT estimate to
decide to retransmit in the following two situations (a simple
example is given in Fig. 4):

When a duplicate ACK is received, Vegas checks to
see if the difference between the current time and the
timestamp recorded for the relevant segment is greater
than the timeout value. If it is, then Vegas retransmits
the segment without having to wait for n (3) duplicate
ACKs. In many cases, losses are either so great or the
window so small that the sender will never receive three
duplicate ACKs, and therefore, Reno would have to rely
on the coarse-grain timeout mentioned above.
When a nonduplicate ACK is received, if it is the first or
second one after a retransmission, Vegas again checks to
see if the time interval since the segment was sent is larger
than the timeout value. If it is, then Vegas retransmits the
segment. This will catch any other segment that may have
been lost previous to the retransmission without having
to wait for a duplicate ACK.

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

1468 IEEE JOURNAL ON SELECTED AREAS I N COMMUNICATIONS, VOL. 13, NO. 8. OCTOBER 1995

.

E
d

Rcvd ACK for packet 10 (packets 11 and 12 are in transit)
Send packet 13 (which is lost)

Rcvd ACK for packet 11
Send packet 14

Rcvd ACK for packet 12
Send packet 15 (which is also lost)

Should have gotten ACK for packet 13

_ _ _ _ _ _ _

p:
U

0
L _ _ _ _ _ _

Rcvd dup ACK for packet 12 (due to packet 14)
Vegas checks timestamp of packet 13 anddecides to retransmit it
(Reno would need to wait for the 3rd duplicate ACK)

Rcvd ACK for packets 13 and 14
Since it is 1st or 2nd ACK after retransmission,
V e g a checks timestamp of packet 15 and decides to retraosmit it
(Reno would need to wait for 3 new duplicate ACKS)

In other words, Vegas treats the receipt of certain ACKs as a
hint to check if a timeout should occur. Since it only checks for
timeouts in rare occasions, the overhead is small. Notice that
even though one could reduce the number of duplicate ACKs
used to trigger the Fast Retransmit from 3 duplicate ACKs to
either 2 or 1 , it is not recommended as it could result in many
unnecessary retransmissions and because it makes assumptions
about the likelihood that packets will be delivered out of order.

The goal of the new retransmission mechanism is not
just to reduce the time to detect lost packets from the third
duplicate ACK to the first or second duplicate ACK-a small
savings-but to detect lost packets even though there may be
no second or third duplicate ACK. The new mechanism is
very successful at achieving this goal, as it further reduces the
number of coarse-grain timeouts in Reno by more than half.3
Vegas still contains Reno’s coarse-grain timeout code in case
the new mechanisms fail to recognize a lost segment.

Related to making timeouts more timely, notice that the
congestion window should only be reduced due to losses that
happened at the current sending rate, and not due to losses
that happened at an earlier, higher rate. In Reno, it is possible
to decrease the congestion window more than once for losses
that occurred during one RTT i n t e r ~ a l . ~ In contrast, Vegas only
decreases the congestion window if the retransmitted segment
was previously sent after the last decrease. Any losses that
happened before the last window decrease do not imply that
the network is congested for the current congestion window
size, and therefore, do not imply that it should be decreased
again. This change is needed because Vegas detects losses
much sooner than Reno.

B. Congestion Avoidance Mechanism

TCP Reno’s congestion detection and control mechanism
uses the loss of segments as a signal that there is congestion in

‘This was tested on an implementation of Vegas which did not have
the congestion avoidance and slow-start modification described later in this
section.

the network. It has no mechanism to detect the incipient stages
of congestion-before losses occur-so they can be prevented.
Reno is reactive, rather than proactive, in this respect. As
a result, Reno needs to create losses to find the available
bandwidth of the connection. This can be seen in Fig. 5, which
shows the trace of a Reno connection sending 1 MB of data
over the network configuration seen in Fig. 6, with no other
traffic sources; i.e., only Host l a sending to Host Ib. In this
case, the router queue size is ten+ach packet is 1.4 KB-and
the queuing discipline is FIFO.

As seen in Fig. 5, Reno’s mechanism to detect the available
bandwidth is to continually increase its window size, using
up buffers along the connection’s path, until it congests the
network and segments are lost. It then detects these losses and
decreases its window size. Consequently, Reno is continually
congesting the network and creating its own losses. These
losses may not be expensive if the Fast Retransmit and Fast
Recovery mechanisms catch them, as seen with the losses
around 7 and 9 s, but by unnecessarily using up buffers at
the bottleneck router it is creating losses for other connections
sharing this router.

As an aside, it is possible to set up the experiment in such a
way that there are little or no losses. This is done by limiting
the maximum window size such that it never exceeds the
delay-bandwidth product of the connection plus the number
of buffers at the bottleneck. This was done, for example,
in [7]. However, this only works when one knows both the
available bandwidth and the number of available buffers at
the bottleneck. Given that one does not have this information
under real conditions, we consider such experiments to be
somewhat unrealistic.

There are several previously proposed approaches for proac-
tive congestion detection based on a common understanding of
the network changes as it approaches congestion (an excellent
development is given in [IO]). These changes can be seen
in Fig. 5 in the time interval from 4.5-7.5 s. One change
is the increased queue size in the intermediate nodes of the
connection, resulting in an increase of the RTT for each
successive segment. Wang and Crowcroft’s DUAL algorithm
[I71 is based on reacting to this increase of the round-trip
delay. The congestion window normally increases as in Reno,
but every two round-trip delays the algorithm checks to see if
the current RTT is greater than the average of the minimum
and maximum RTT’s seen so far. If it is, then the algorithm
decreases the congestion window by one-eighth.

Jain’s CARD (Congestion Avoidance using Round-trip De-
lay) approach [lo] is based on an analytic derivation of a
socially optimum window size for a deterministic network.
The decision as to whether or not to change the current
window size is based on changes to both the R’IT and the
window size. The window is adjusted once every two round-
trip delays based on the product (W’CridowSi~e,.,,.,..,~~ -
WirrdowSize,~d) x (RTTcvrrent - RTTold) as follows: if
the result is positive, decrease the window size by one-eighth;
if the result is negative or zero, increase the window size by
one maximum segment size. Note that the window changes

4This problem in the BSD versions of Reno has also been pointed out by during every adjustment, that is, it Oscillates around its Optimal
Sally Floyd [4I. point.

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

BRAKMO AND PETERSON: TCP VEGAS: END TO END CONGESTION AVOIDANCE ON A GLOBAL INTERNET 1469

.
70

Bo
50

40

3 %
20

i o
0

8'5 a!o 9'5 i d 0 . . . : . . , e *
110 m w u o 6 6 o w J 7 7 o w J e s o l i w - I t r l . ~ I

lo00 -
Wo-

g E:
I E:
E 400-
8 3w-
m-
loo -

8'5 $0 9'5 ,do

i o

5

4

4
2 .-

I
I
0

0

Fig. 5. TCP Reno with no other traffic (throughput: 123 KB/s).

Host 28 Host 2b

5Oms delay

Hmt 3a Host 3b

Fig. 6. Network configuration for simulations.

Another change seen as the network approaches congestion
is the flattening of the sending rate. Wang and Crowcroft's Tri-
S scheme [16] takes advantage of this fact. Every RTT, they
increase the window size by one segment and compare the
throughput achieved to the throughput when the window was
one segment smaller. If the difference is less than one-half the
throughput achieved when only one segment was in transit-as
was the case at the beginning of the connection-they decrease
the window by one segment. Tri-S calculates the throughput
by dividing the number of bytes outstanding in the network
by the RTT.

Vegas' approach is most similar to T i -S in that it looks at
changes in the throughput rate, or more specifically, changes
in the sending rate. However, it differs from Tri-S in that it
calculates throughputs differently, and instead of looking for
a change in the throughput slope, it compares the measured
throughput rate with an expected throughput rate. The basis
for this idea can be seen in Fig. 5 in the region between 4 and
6 s. As the window size increases we expect the throughput
(or sending rate) to also increase. But the throughput cannot

increase beyond the available bandwidth; beyond this point,
any increase in the window size only results in the segments
taking up buffer space at the bottleneck router.

Vegas uses this idea to measure and control the amount of
extra data this connection has in transit, where by extra data we
mean data that would not have been sent if the bandwidth used
by the connection exactly matched the available bandwidth
of the network. The goal of Vegas is to maintain the "right"
amount of extra data in the network. Obviously, if a connection
is sending too much extra data, it will cause congestion. Less
obviously, if a connection is sending too little extra data, it
cannot respond rapidly enough to transient increases in the
available network bandwidth. Vegas' congestion avoidance
actions are based on changes in the estimated amount of extra
data in the network, and not only on dropped segments.

We now describe the algorithm in detail. Note that the
algorithm is not in effect during slow-start. Vegas' behavior
during slow-start is described in Section 111-C.

First, define a given connection's BaseRTT to be the RTT of
a segment when the connection is not congested. In practice,
Vegas sets B a s e R P to the minimum of all measured round
trip times; it is commonly the RTT of the first segment sent
by the connection, before the router queues increase due to
traffic generated by this c~nnect ion .~ If we assume that we are
not overflowing the connection, then the expected throughput
is given by:

Expected = WindowSizeIBaseRTT

Although we do not know the exact value for the BaseRTT, our experience
suggests our algorithm is not sensitive to small errors in the BaseRTT.

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

~

1470 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 13. NO. 8, OCTOBER 1995

where Windowsize is the size of the current congestion win-
dow, which we assume for the purpose of this discussion, to
be equal to the number of bytes in transit.

Second, Vegas calculates the current Actual sending rate.
This is done by recording the sending time for a distinguished
segment, recording how many bytes are transmitted between
the time that segment is sent and its acknowledgment is
received, computing the RTT for the distinguished segment
when its acknowledgment arrives, and dividing the number of
bytes transmitted by the sample RTT. This calculation is done
once per round-trip time.6

Third, Vegas compares Actual to Expected, and adjusts the
window accordingly. Let Difi = Expected - Actlid. Note
that Diff is positive or zero by definition, since Actual >
Expected implies that we need to change BaseRlT to the
latest sampled RTT. Also define two thresholds, cy < j 3 ,
roughly corresponding to having too little and too much extra
data in the network, respectively. When Dzjj < cy, Vegas
increases the congestion window linearly during the next RTT,
and when DZfl > /j, Vegas decreases the congestion window
linearly during the next RTT. Vegas leaves the congestion
window unchanged when CY < DZfl < p.

Intuitively, the farther away the actual throughput gets
from the expected throughput, the more congestion there is
in the network, which implies that the sending rate should
be reduced. The 1) threshold triggers this decrease. On the
other hand, when the actual throughput rate gets too close
to the expected throughput, the connection is in danger of not
utilizing the available bandwidth. The Q threshold triggers this
increase. The overall goal is to keep between Q and [j extra
bytes in the network.

Because the algorithm, as just presented, compares the
difference between the actual and expected throughput rates
to the cy and /j thresholds, these two thresholds are defined
in terms of KB/s. However, it is perhaps more accurate to
think in terms of how many extra buffers the connection is
occupying in the network. For example, on a connection with
a BaseRTT of 100 ms and a segment size of 1 KB, if cy =
30 KB/s and [I = 60 KB/s, then we can think of Q as saying
that the connection needs to be occupying at least three extra
buffers in the network, and p saying it should occupy no more
than six extra buffers in the network.

In practice, we express a and 0 in terms of buffers rather
than extra bytes in transit. During linear increase/decrease
mode-as opposed to the slow-start mode described be-
low-we set CY to one and {j to three. This can be interpreted
as an attempt to use at least one, but no more than three extra
buffers in the connection. We settled on these values for cy

and p as they are the smallest feasible values. We want Q

to be greater than zero so the connection is using at least
one buffer at the bottleneck router. Then, when the aggregate
traffic from the other connections decreases (as is bound to
happen every so often), our connection can take advantage of

We have made every attempt to keep the overhead of Vegas’ congestion
avoidance mechanism as small as possible. To help quantify this effect, we
ran both Reno and Vegas between SparcStations connected by an Ethernet,
and measured the penalty to be less than 5%. This overhead can be expected
to drop as processors become faster.

the extra available bandwidth immediately without having to
wait for the one R I T delay necessary for the linear increase
to occur. We want [l to be two buffers greater than U so small
sporadic changes in the available bandwidth will not create
oscillations in the window size. In other words, the use of the
cy - j 3 region provides a damping effect.

Even though the goal of this mechanism is to avoid conges-
tion by limiting the number of buffers used at the bottleneck, it
may not be able to achieve this when there are a large number
of “bulk data” connections going through a bottleneck with a
small buffer size. However, Vegas will successfully limit the
window growth of connections with smaller round-trip times.
The mechanisms in Vegas are not meant to be the ultimate
solution, but they represent a considerable enhancement to
those in Reno.

Fig. 7 shows the behavior of TCP Vegas when there is
no other traffic present; this is the same condition that Reno
ran under in Fig. 5. There is one new type of graph in this
figure, the third one, which depicts the congestion avoidance
mechanism (CAM) used by Vegas. Once again, we use a
detailed graph (Fig. 8) keyed to the following explanation:

The small vertical line-once per RTT-shows the times
when Vegas makes a congestion control decision; i.e.,
computes Actual and adjusts the window accordingly.
The gray line shows the Expected throughput. This is
the throughput we should get if all the bytes in transit
are able to get through the connection in one BaseRTT.
The solid line shows the Actual sending rate. We cal-
culate it from the number of bytes we sent in the last
RTT.
The dashed lines are the thresholds used to control the
size of the congestion window. The top line corresponds
to the cy threshold and the bottom line corresponds to
the p threshold.

Fig. 9 shows a trace of a Vegas connection transferring
one Mbyte of data, while sharing the bottleneck router with
tcplib traffic. The third graph shows the output produced by
the TRAFFIC protocol simulating the TCP traffic-the thin
line is the sending rate in KB/s as seen in 100 ms intervals
and the thick line is a running average (size 3). The bottom
graph shows the output of the bottleneck link which has a
maximum bandwidth of 200 KB/s. The figure clearly shows
Vegas’ congestion avoidance mechanisms at work and how its
throughput adapts to the changing conditions on the network.
For example, as the background traffic increases at 3.7 s
(third graph), the Vegas connection detects it and decreases
its window size (top graph) which results in a reduction in
its sending rate (second graph). When the background traffic
slows down at 5, 6, and 7.5 s, the Vegas connection increases
its window size, and correspondingly its sending rate. The
bottom graph shows that most of the time there is a 100%
utilization of the bottleneck link.

In contrast, Fig. 10 shows the behavior of Reno under
similar conditions. It shows that there is very little correlation
between the window size and the level of background traffic.
For example, as the background traffic increases at 3.7 s,
the Reno connection keeps increasing its window size until

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

BRAKMO AND PETERSON: TCP VEGAS: END TO END CONGESTION AVOIDANCE ON A GLOBAL INTERNET 1471

10 -

-

8, 0 I I

0

11111111111111111111lllllllllllllllllllllll ~JI I ,11 I

Fig. 7. TCP Vegas with no other traffic (throughput: 169 KBls).

6 6 6 a

240

200

s 160
120

Y

s
5 80

40

Fig. 8. Congestion detection and avoidance in Vegas.

there is congestion. This results in losses, both to itself and
to connections which are part of the background traffic. The
graph only shows the first 10 s of the one Mbyte transfer; it
took 14.2 s to complete the transfer. The bottom graph shows
that there is under-utilization of the bottleneck link.

The important thing to take away from this information
is that Vegas' increased throughput is not a result of its
taking bandwidth away from Reno connections, but due to a
more efficient utilization of the bottleneck link. In fact, Reno

connections do slightly better when the background traffic is
running in top of Vegas as compared to when the traffic is
running on top of Reno (see Section IV).

C. Mod@ied Slow-Start Mechanism

TCP is a "self-clocking" protocol, that is, it uses ACKs as
a "clock" to strobe new packets into the network [7]. When
there are no segments in transit, such as at the beginning of
a connection or after a retransmit timeout, there will be no
ACKs to serve as a strobe. Slow-start is a mechanism used
to gradually increase the amount of data in-transit; it attempts
to keep the segments uniformly spaced. The basic idea is to
send only one segment when starting or restarting after a loss,
then as the ACKs are received, to send an extra segment in
addition to the amount of data acknowledged in the ACK.
For example, if the receiving host sends an acknowledgment
for each segment it receives, the sending host will send 1
segment during the first RTT, 2 during the second RTT, 4
during the third, and so on. It is easy to see that the increase
is exponential, doubling its sending rate on each RTT.

The behavior of the slow-start mechanism can be seen
in Figs. 3 and 10. It occurs twice, once during the interval
between 0-1 s, and again in the interval between 2-2.5 s;

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

1472 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13. NO. 8, OCTOBER 1995

. . . * *

Tlma In uconcb

0'5 1'0 1'5 2'0 2'5 3'0 3'5 4'0 4'5 5'0 515 6'0 6'5 7'0 7'5 8'0 8'5 9'0 9'5 i d o
nmm in ucond.

Fig 9 TCP Vegas with tcphb-generated background traffic

the latter after a coarse-grain timeout. The behavior of the
initial slow-start is different from the ones that occur later
in one important respect. During the initial slow-start, there
is no a priori knowledge of the available bandwidth that
can be used to stop the exponential growth of the window,
whereas when slow-start occurs in the middle of a connection,
there is the knowledge of the window size used when the
losses occurred-Reno considers half of that value to be
safe.

Whenever a retransmit timeout occurs, Reno sets the thresh-
old window to one half of the congestion window. The slow-
start period ends when the exponentially increasing congestion
window reaches the threshold window, and from then on, the
increase is linear, or approximately one segment per RTT.
Since the congestion window stops its exponential growth at
half the previous value, it is unlikely that losses will occur
during the slow-start period.

However, there is no such knowledge of a safe window
size when the connection starts. If the initial threshold window
value is too small, the exponential increase will stop too early,
and it will take a long time-by using the linear increase-to
amve at the optimal congestion window size. As a result,
throughput suffers. On the other hand, if the threshold window

is set too large, the congestion window will grow until the
available bandwidth is exceeded, resulting in losses on the
order of the number of available buffers at the bottleneck
router; these losses can be expected to grow as network
bandwidth increases.

What is needed is a way to find a connection's available
bandwidth which does not incur these kinds of losses. Towards
this end, we incorporated our congestion detection mechanism
into slow-start with only minor modifications. To be able to
detect and avoid congestion during slow-start, Vegas allows
exponential growth only every other RTT. In between, the
congestion window stays fixed so a valid comparison of the
expected and actual rates can be made. When the actual
rate falls below the expected rate by the equivalent of one
router buffer, Vegas changes from slow-start mode to linear
increaseldecrease mode.

The behavior of the modified slow-start can be seen in
Figs. 7 and 9. The reason that we need to measure the actual
rate with a fixed congestion window is that we want the actual
rate to represent the bandwidth allowed by the connection.
Thus, we can only send as much data as is acknowledged
in the ACK (during slow-start, Reno sends an extra segment
for each ACK received). This mechanism is highly successful

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

BRAKMO AND PETERSON TCP VEGAS: END TO END CONGESTION AVOIDANCE ON A GLOBAL INTERNET 1473

Fig. 10. TCP Reno with fcplib-generated background traffic.

at preventing the losses incurred during the initial slow-start
period, as quantified in the next section.

Two problems remain during any slow-start period. First,
segments are sent at a rate higher than the available band-
width-up to twice the available bandwidth, depending on
the ACKing frequency (e.g., every segment or every two
segments). This results on the bottleneck router having to
buffer up to half of the data sent on each RTT, thereby
increasing the likelihood of losses during the slow-start period.
Moreover, as network speeds increase, so does the amount
of buffering needed. Second, while Vegas' congestion avoid-
ance mechanism during the initial slow-start period is quite
effective, it can still overshoot the available bandwidth, and
depends on enough buffering at the bottleneck router to prevent
losses until realizing it needs to slow down. Specifically, if the
connection can handle a particular window size, then Vegas
will double that window size-and as a consequence, double
the sending ra te -on the next RTT. At some point the available
bandwidth will be exceeded.

We have experimented with a solution to both problems. To
simplify the following discussion, we refer to the alternative
version of Vegas with an experimental slow-start mechanism
as Vegas*. Vegas* is based on using the spacing of the

acknowledgments to gauge the available bandwidth. The idea
is similar to Keshav's Packet-Pair probing mechanism [131,
except that it uses the spacing of four segments sent during
the slow-start period rather than two. (Using four segments
results in a more robust algorithm than using two segments.)
This available bandwidth estimate is used to set the threshold
window with an appropriate value, which makes Vegas* less
likely to overshoot the available bandwidth.

Specifically, as each ACK is received, Vegas* schedules
an event at a certain point in the future, based on its available
bandwidth estimate, to increase the congestion window by one
maximum segment size. This is in contrast to increasing the
window immediately upon receiving the ACK. For example,
assume the R I T is 100 ms, the maximum segment size is
1 KEiyte, and the available bandwidth estimate is currently
200 KB/s. During the slow-start period, time is divided into
intervals of length equal to one RTT. If during the current
RTT interval we are expecting 4 ACKs to arrive, then Vegas*
uses the bandwidth estimate (200 KB/s) to guess the spacing
between the incoming ACKs (1 KB/200 KB/s = 5 ms) and
as each ACK is received, it schedules an event to increase the
congestion window (and to send a segment) at 20 ms (5 x 4)
in the future.

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

1474 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

. . .
40 80 110 180

70 -IWHD % I 1

60

50

40

8 3 0
20

10

0

0 0

0 0

Fig. 1 I . TCP Vegas on the left, experimental on the right.

The graphs in Fig. 11 show the behavior of Vegas (left)
and Vegas* (right) during the initial slow-start. For this set
of experiments, the available bandwidth was 300 KB/s and
there were 16 buffers at the router. Looking at the graphs on
the left, we see that a packet is lost at around 1 s (indicated
by the thin vertical bar) as a result of sending at 400 KB/s.
This is because Vegas detected no problems at 200 KB/s, so it
doubled its sending rate, but in this particular case, there were
not enough buffers to protect it from the losses. The bottom
graph demonstrates the need to buffer half of the data sent on
each RTT as a result of sending at a rate twice the available
bandwidth.

The graphs on the right illustrate the behavior of Vegas*. It
sets the threshold window (dashed line) based on the available
bandwidth estimate. This results in the congestion window
halting its exponential growth at the right time-when the
sending rate equals the available bandwidth and preventing
the losses. The middle graph shows that the sending rate never
exceeds the available bandwidth (300 KB/s) by much. Finally,
the bottom graph shows that Vegas* does not need as many
buffers as Vegas.

Notice that while the available bandwidth estimate could
be used to jump immediately to the available bandwidth by
using rate control during one RTT interval, congestion would
result if more than one connection did this at the same time.
Even though it is possible to congest the network if more than
one connection does slow-start at the same time, there is an
upper bound on the number of bytes sent during the RTT when
congestion occurs regardless of the number of connections
simultaneously doing slow-start-about twice the number of
bytes that can be handled by the connection. There is no such

limit if more than one connection jumps to use the available
bandwidth at once. Hence, we strongly recommend against
doing this unless it is known a priori that there are no other
connections sharing the path, or if there are, that they will not
increase their sending rate at the same time.

Although these traces illustrate how Vegas*'s experimental
slow-start mechanism does in fact address the two problems
with Vegas outlined above, simulation data indicates that
the new mechanism does not have a measurable impact on
throughput, and only marginally improves the loss rate. While
additional simulations might expose situations where Vegas*
is more beneficial, we have decided to not include these
modifications in Vegas. Also, the results presented in Section
IV are for Vegas, not Vegas*.

IV. PERFORMANCE EVALUATION

This section reports and analyzes the results from both the
Internet and the simulator experiments. The results from the
Internet experiments are evidence that Vegas' enhancements to
Reno produce significant improvements on both the throughput
(37% higher) and the number of losses (less than half) under
real conditions. The simulator experiments, allow us to also
study related issues such as how do Vegas connections affect
Reno connections, and what happens when all connections are
running over Vegas. Note that because it is simple to move a
protocol between the simulator and the "real world," all the
numbers reported in this section are for exactly the same code.

A. Internet Results

We first present measurements of TCP over the Inter-
net. Specifically, we measured TCP transfers between the

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

BRAKMO AND PETERSON: TCP VEGAS: END TO END CONGESTION AVOIDANCE ON A GLOBAL INTERNET 1475

Throughput (KB/s)
Throughput Ratio

TABLE I
1 MByte TRANSFER OVER THE INTERNET

Reno Vega-1,3 Vega-2.4
53.00 72.50 75.30

1 .00 1.37 1.42 - _
1 RetransmissionsMBI I 47.80 I 24.50 I 29.30 I

I ~. .. . , ,
Retransmit Ratio I 1.00 I 0.51 I 0.61
Coarse limeouts I 3.30 I 0.80 I 0.90

TABLE I1
EFFECTS OF TRANSFER SIZE OVER THE INTERNET

Coarse Timeouts I 3.30 I 0.80 I 1.70 I 0.20 1 1.10 I 0.20

University of Arizona (UA) and the National Institutes of
Health (NIH). The connection consists of 17 hops, and passes
through Denver, St. Louis, Chicago, Cleveland, New York,
and Washington DC. The results are derived from a set of
runs over a seven day period from January 23-29, 1994. Each
run consists of a set of seven transfers from UA to NIH-Reno
sends 1 MB, 512 KB, and 128 KB, a version of Vegas with
a: = 1 and p = 3 (denoted Vegas-1,3) sends 1 MB, 512 KB,
and 128 KB, and second version of Vegas with a: = 2 and
@ = 4 (denoted Vegas-2,4) sends 1 MB. We inserted a 45 s
delay between each transfer in a run to give the network a
chance to settle down, a run started approximately once every
hour, and we shuffled the order of the transfers within each
run.

Table I shows the results for the 1 MB transfers. Depending
on the congestion avoidance thresholds, it shows between
37 and 42% improvement over Reno’s throughput with only
5 1 4 1 % of the retransmissions. When comparing Vegas and
Reno within each run, Vegas outperforms Reno 92% of the
time and across all levels of congestion; i.e., during both the
middle of the night and during periods of high load. Also,
the throughput was a little higher with the bigger thresholds,
since the Vegas connection used more buffers at the bottleneck
router which could be used to fill bandwidth gaps occumng
when the background traffic slowed down. However, the
higher buffer utilization at the bottleneck also resulted in
higher losses and slightly higher delays. We prefer the more
conservative approach of using fewer resources, so have settled
on avoidance thresholds of a = 1 and

Because we were concerned that Vegas’ throughput im-
provement depended on large transfer sizes, we also varied the
size of the transfer. Table I1 shows the effect of transfer size
on both throughput and retransmissions for Reno and Vegas-
1,3. First, observe that Vegas does better relative to Reno as
the transfer size decreases. In terms of throughput, we see an
increase from 37-71%. The results are similar for retransmis-
sions, as the relative number of Vegas retransmissions goes
from 51% of Reno’s to 17% of Reno’s.

Notice that the number of kilobytes retransmitted by Reno
starts to flatten out as the transfer size decreases. When we

= 3.

decreased the transfer size by half, from 1 MB to 512 KB, we
see a 42% decrease in the number of kilobytes retransmitted.
When we further decrease the transfer size to one-fourth its
previous value, from 512 KB to 128 KB, the number of
kilobytes retransmitted only decreases by 18%. This indicates
that we are approaching the average number of kilobytes
retransmitted due to Reno’s slow-start losses. From these
results, we conclude that there are around 20 KBs retransmitted
during slow-start, for the conditions of our experiment.

On the other hand, the number of kilobytes retransmitted
by Vegas decreases almost linearly with respect to the transfer
size. This indicates that Vegas eliminates nearly all losses
during slow-start due to its modified slow-start with congestion
avoidance. Note that if the transfer size is smaller than about
twice the bandwidth-delay product, then there will be no losses
for neither Vegas nor Reno (assuming the bottleneck router has
enough buffers to absorb temporary sending rates above the
connections available bandwidth).

B. Simulation Results

This subsection reports the results of series of experiments
using the z-kernel based simulator. The simulator allows
us to better control the experiment, and in particular, gives
us the opportunity to see whether or not Vegas gets its
performance at the expense of Reno-based connections. Note
that all the experiments used in this subsection are on the
network configuration shown in Fig. 6. We have also run
other topologies and different bandwidth-delay parameters,
with similar results.

1) One-on-One Experiments: We begin by studying how
two TCP connections interfere with each other. To do this, we
start a 1 MB transfer, and then after a variable delay, start a
300 KB transfer. The transfer sizes and delays are chosen to
ensure that the smaller transfer is contained completely within
the larger.

Table I11 gives the results for the four possible combinations,
where the column heading RenoNegas denotes a 300 KB
transfer using Reno contained within a 1 Mbyte transfer using
Vegas. For each combination, the table gives the measured
throughput and number of kilobytes retransmitted for both
transfers; e.g., in the case of RenoNegas, the 300 KB Reno
transfer achieved a 61 KB/s throughput rate and the 1 Mbyte
Vegas transfer achieved a 123 KB/s throughput rate.7 The
ratios for both throughput rate and kilobytes retransmitted are
relative to the Renomeno column. The values in the table are
averages from 12 runs, using 15 and 20 buffers in the routers,
and with the delay before starting the smaller transfer ranging
between 0 and 2.5 s.

The main thing to take away from these numbers is that
Vegas does not adversely affect Reno’s throughput. Reno’s
throughput stays pretty much unchanged when it is compet-
ing with Vegas rather than itself-the ratios for Reno are
1.02 and 1.09 for RenoNegas and Vegasmeno, respectively.
Also, when Reno competes with Vegas rather than itself,

7Comparing the small transfer to the large transfer in any given column is
not meaningful. This is because the large transfer was able to run by itself
during most of the test.

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

1476 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

Throughput(KB/s)
Throuahuut Ratios

TABLE I11
ONE-ON-ONE (300 KB AND 1 MB) TRANSFERS

Reno/Reno RenoNegas VegadReno VegasNegas
60/109 61/123 66/119 74/131
1.00/1 .OO 1.02/1.13 1.10/1.09 1.23/1.20

Throughput (KBls)
Throughput Ratio
Retransmissions (KBI

I.

Retransmissions(KB) I 30/22 I 43/13 1 1.5/18 I 0.310.1
Retransmit Ratios I 1.00/1.00 I 1.43/0.08 1 0.05/0.82 I 0.01/0.01

I I

58.30 89.40 91.80
1 .00 1.53 1.58
55.40 27.10 29.40

the combined number of kilobytes retransmitted for the pair
of competing connections drops significantly. The combined
RenoReno retransmits are 52 KB compared with 45 KB for
RenoNegas and 19 KB for VegasReno. Finally, note that
the combined VegasNegas retransmits are less than 1 KB
on the average-an indication that the congestion avoidance
mechanism is working.

Since the probability that there are exactly two connections
at one time is small in real life, we modified the experiment
by adding fcplib background traffic. The results were similar
except for the RenoNegas experiment in which Reno only
had a 6% increase in its retransmission, versus the 43% when
there was no background traffic.

This 43% increase in the losses of Reno for the RenoNegas
case is explained as follows. The Vegas connection starts first,
and is using the full bandwidth (200 KB/s) by the time the
Reno connection starts. When Vegas detects that the network
is starting to get congested, it decreases its sending rate to
between 80 and 100 KB/s. The losses incurred by Reno (about
48 KB), are approximately the losses Reno experiences when
it is running by itself on a network with 100-120 KB/s of
available bandwidth and around 15 available buffers at the
bottleneck router. The reason the losses were smaller for the
300 KB transfer in the RenoReno experiment is that by the
time the 300 KB transfer starts, the 1 MB connection has
stopped transmitting due to the losses in its slow-start, and it
will not start sending again until it times out at around 2 s.
A Reno connection sending 300 KB when there is 200 KB/s
of available bandwidth and 20 buffers at the bottleneck router
only losses about 3 KB.

This type of behavior is characteristic of Reno: by slightly
changing the parameters in the network, one can observe major
changes in Reno’s behavior. Vegas, on the other hand, does
not show as much discontinuity in its behavior.

2) Background TrafJic: We next measured the performance
of a distinguished TCP connection when the network is
loaded with traffic generated from tcplib. That is, the protocol
TRAFFIC is running between Host l a and Host Ib in Fig. 6,
and a 1 Mbyte transfer is running between Host 2a and Host
2b. In this set of experiments, the tcplib traffic is running over
Reno.

Table IV gives the results for Reno and two versions
of Vegas-Vegas-1,3 and Vegas-2,4. We varied these two
thresholds to study the sensitivity of our algorithm to them.
The numbers shown are averages from 57 runs, obtained by
using different seeds for tcplib, and by using 10, 15, and 20
buffers in the routers.

The table shows the throughput rate for each of the dis-
tinguished connections using the three protocols, along with
their ratio to Reno’s throughput. It also gives the number of

TABLE IV
1 MByte TRANSFER WITH fcpiib-GENERATED BACKGROUND RENO TRAFFIC

I I Reno I Veaas-1.3 I Veaas-2.4 I

. .
Retransmit Ratio I 1.00 I 0.49 I 0.53
Coarse Timeouts I 5.60 I 0.90 I 0.90

kilobytes retransmitted, the ratio of retransmits to Reno’s, and
the average number of coarse-grained timeouts per transfer.
For example, Vegas-l,3 had 53% better throughput than Reno,
with only 49% of the losses. Again note that there is little
difference between Vegas- 1,3 and Vegas-2,4.

These simulations tell us the expected improvement of
Vegas over Reno: more than 50% improvement on throughput,
and only half the losses. The results from the one-on-one
experiments indicate that the gains of Vegas are not made at
the expense of Reno; this belief is further supported by the fact
that the background traffic’s throughput is mostly unaffected
by the type of connection doing the 1 Mbyte transfer.

We also ran these tests with the background traffic using
Vegas rather than Reno. This simulates the situation where
the whole world uses Vegas. The throughput and the kilo-
bytes retransmitted by the 1 Mbyte transfers did not change
significantly (less than 4%).

3) Other Experiments: We tried many variations of the
previous experiments. On the whole, the results were similar,
except for when we changed TCP’s send-buffer size. Below
we summarize these experiments and their results.

Two- Way Background Traffic: There have been reports of
change in TCP’s behavior when the background traffic is
two-way rather than one-way [18]. Thus, we modified
the experiments by adding tcplib traffic from Host 3b
to Host 3a. The throughput ratio stayed the same, but
the loss ratio was much better: 0.29. Reno resent more
data and Vegas remained about the same. The fact that
there was not much change is probably due to the fact
that tcplib already creates some 2-way traffic-TELNET
connections send one byte and get one or more bytes
back, and FTP connections send and get control packets
before doing a transfer.
Different TCP Send-Buffer Sizes: For all the experiments
reported so far, we ran TCP with a 50 KB send-buffer.
For this experiment, we tried send-buffer sizes between
50 KB and 5 KB. Vegas’ throughput and losses stayed
unchanged between 50 KB and 20 KB; from that point
on, as the buffer decreased, so did the throughput. This
was due to the protocol not being able to keep the pipe
full.

Reno’s throughput initially increased as the buffers got
smaller, and then it decreased. It always remained under
the throughput measured for Vegas. We have previously
seen this type of behavior while running Reno on the
Internet. If we look back at Fig. 5, we see that as Reno
increases its congestion window, it uses more and more
buffers in the router until it loses packets by overrunning
the queue. If we limit the congestion window by reducing

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

BRAKMO AND PETERSON: TCP VEGAS: END TO END CONGESTION AVOIDAN<

the size of the send-buffer, we may prevent it from
overrunning the router’s queue.

V. DISCUSSION

Throughput and losses are not the only metrics by which a
transport protocol is evaluated. This section discusses several
other issues that must be addressed. It also comments on the
relationship between this work and other efforts to improve
end-to-end performance on the Internet.

A. Fairness

If there is more than one connection sharing a bottleneck
link, we would like for each connection to receive an equal
share of the bandwidth. Unfortunately, given the limited
amount of information currently available at the connection
endpoints, this is unlikely to happen without some help from
the routers. Given that no protocol is likely to be perfectly
fair, we need a way to decide whether its level of fairness
is acceptable or not. Also, given that so far the Internet
community has found Reno’s level of fairness acceptable, we
decided to compare Vegas’ fairness levels to Reno’s and judge
it in those terms.

Before there can be any comparisons, we need a metric.
We decided to use Jain’s fairness index [1 13, which is defined
as follows: given a set of throughputs (21, 2 2 , . . , 2,) the
following function assigns a fairness index to the set:

/ n \ 2

Given that the throughputs are nonnegative, the fairness index
always results in numbers between 0 and 1. If all throughputs
are the same, the fairness index is 1. If only IC of the n users
receive equal throughput and the remaining n - IC users receive
zero throughput, the fairness index is k / n .

We ran simulations with 2, 4, and 16 connections sharing a
bottleneck link, where all the connections either had the same
propagation delay, or where one half of the connections had
twice the propagation delay of the other half. Many different
propagation delays were used, with the appropriate results
averaged.

In the case of 2 and 4 connections, with each connection
transferring 8 MB, Reno was slightly more fair than Vegas
when all connections had the same propagation delay (0.993
versus 0.989), but Vegas was slightly more fair than Reno
when the propagation delay was larger for half of the con-
nections (0.962 versus 0.953). In the experiments with 16
connections, with each connection transferring 2 MB, Vegas
was more fair than Reno in all experiments regardless of
whether the propagation delays were the same or not (0.972
versus 0.921).

To study the effect that Reno connections have over Vegas
connections (and vice versa) we ran 8 connections, each

:E ON A GLOBAL INTERNET 1477

sending 2 MB of data. The experiment consisted of running
all the connections on top of Reno, all the connections on top
of Vegas, or one half on top on Reno and the other half on
top of Vegas. There was little difference between the fairness
index of the eight connections running a particular TCP
implementation (Vegas or Reno) and the fairness index of the
four connections running the same TCP implementation and
sharing the bottleneck with the four connections running the
other TCP implementation. Similarly, we saw little difference
in the average size of the bottleneck queue.

In another experiment, we ran four connections over back-
ground traffic. For this experiment, Vegas was always more
fair than Reno. Overall, we conclude that Vegas is no less fair
than Reno.

B. Stability

A second concern is stability-it is undesirable for a pro-
tocol to cause the Internet to collapse as the number of
connections increases. In other words, as the load increases,
each connection must recognize that it should decrease its
sending rate. Up to the point where the window can be
greater than one maximum segment size, Vegas is much better
than Reno at recognizing and avoiding congestion-we have
already seen that Reno does not avoid congestion, on the
contrary, it periodically creates congestion.

Once the load is so high that on average each connection
can only send less than one maximum segment’s worth of
data, Vegas behaves like Reno. This is because this extreme
condition implies that coarse-grain timeouts are involved,
and Vegas uses exactly the same coarse-grain mechanism as
Reno. Experimental results confirm this intuition: running 16
connections, with a 50 ms one-way propagation delay, through
a router with either 10 or 20 buffers and 100 or 200 KB/s of
bandwidth produced no stability problems.

We have also simulated complex network topologies like
the one shown in Fig. 12, which consists of 16 traffic sources
each of which contains two or three hosts. Each host, in turn,
is running tcplib-based traffic. The rectangular boxes represent
sources of “bulk data” transfers. The resulting traffic consists
of nearly a thousand new connections being established per
simulated second, where each connection is either a TELNET,
FTP, SMTP, or “’I” conversation. No stability problems
have occurred in any of our simulations when all of the
connections are running Vegas.

In summary, there is no reason to expect Vegas to lead
to network collapse. One reason for this is that most of
Vegas’ mechanisms are conservative in nature-its congestion
window never increases faster than Reno’s (one maximum
segment per RTT), the purpose of the congestion avoidance
mechanism is to decrease the congestion window before losses
occur, and during slow-start, Vegas stops the exponential
growth of its congestion window before Reno would under
the same conditions.

C. Queue Behavior

Given that Vegas purposely tries to occupy between one and
three extra buffers along the path for each connection, it seems

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

1478 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

TS TS

Fig. 12. Complex simulation network.

possible that persistent queues could form at the bottleneck
router if the whole world ran Vegas. These persistent queues
would, in turn, add to the latency of all connections that
crossed that router.

Since the analytical tools currently available are not good
enough to realistically model and analyze the behavior of
either Reno or Vegas, we must rely on simulations to answer
this issue. Our simulations show that average queue sizes
under Reno and Vegas are approximately the same. However,
they also show that TELNET connections in tcplib experience
between 18 and 40% less latency, on average, when all the
connections are Vegas instead of Reno. This seems to suggest
that if the whole world ran Vegas, Internet latency would not
be adversely affected.

D. BSD Variations

TCP has been a rather fluid protocol over the last several
years, especially in its congestion control mechanism. Al-
though the general form the original mechanism described in
[7] has remained unchanged in all BSD-based implementations
(e.g., Tahoe, Reno, BNR2, BSD 4.4), many of the “constants”
have changed. For example, some implementations ACK every
segment and some ACK every other segment; some increase
the window during linear growth by one segment per RTT
and some increase by half a segment per RTT plus 1/8th the
maximum segment size per ACK received during that RTT;
and finally, some use the timestamp option and some do not.

We have experimented with most of these variations and
have found the combination used in our version of Reno, as
reported in this paper, to be the among the most effective.
For example, we found the latest version of TCP, that found
in BSD 4.4-lite,’ achieves 14% worse throughput than our
Reno during Internet type simulations [2]. Also, others [l]
have compared Vegas with the SunOS implementation of TCP,
which is derived from Reno, and have reached conclusions
similar to those in this paper.

8This is the implementation of TCP available at ftp.cdrom.com, dated
4/10/94.

E. Alternative Approaches

In addition to improving TCP’s congestion control mecha-
nism, there is a large body of research addressing the general
question of how to fairly and effectively allocate resources
in the Internet. We conclude this section by discussing the
relevance of TCP Vegas to these other efforts.

One example gaining much attention is the question of
how to guarantee bandwidth to real-time connections. The
basic approach requires that a more intelligent buffer manager
be placed in the Internet routers [14]. One might question
the relevance of TCP Vegas in light of such mechanisms.
We believe end-to-end congestion control will remain very
important for two reasons. First, a significant fraction of the
data that will flow over the Internet will not be of a real-
time nature; it will be bulk-transfer applications (e.g., image
transfer) that want as much bandwidth as is currently available.
These transfers will be able to use Vegas to compete against
each other for the available bandwidth. Second, even for a
real-time connection, it would not be unreasonable for an
application to request (and pay for) a minimally acceptable
bandwidth guarantee, and then use a Vegas-like end-to-end
mechanism to acquire as much additional bandwidth as the
current load allows.

As another example, selective ACKs [8], [9] have been
proposed as a way to decrease the number of unnecessarily
retransmitted packets and to provide information for a better
retransmit mechanism than the one in Reno. Although the
selective ACK mechanism is not yet well defined, we make
the following observations about how it compares to Vegas.
First, it only relates to Vegas’ retransmission mechanism;
selective ACKs by themselves affect neither the congestion
nor the slow-start mechanisms. Second, there is little reason
to believe that selective ACKs can significantly improve on
Vegas in terms of unnecessary retransmissions, as there were
only 6 KB per MB unnecessarily retransmitted by Vegas in
our Internet experiments. Third, selective ACKs have the
potential to retransmit lost data sooner on future networks
with large delayhandwidth products. It would be interesting
to see how Vegas and the selective ACK mechanism work

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

http://ftp.cdrom.com

BRAKMO AND PETERSON: TCP VEGAS: END TO END CONGESTION AVOIDANCE ON A GLOBAL INTERNET 1479

m
Y

70

60

50

40

30
20
10

0

3.5

Fig. 13. TCP windows graph.

in tandem on such networks. Finally, we note that selective
ACKs require a change to the TCP standard, whereas the Vegas
modifications are an implementation change that is isolated to
the sender.

VI. CONCLUSIONS

We have introduced several techniques for improving TCP,
including a new timeout mechanism, a novel approach to
congestion avoidance that tries to control the number of extra
buffers the connection occupies in the network, and a modified
slow-start mechanism. Experiments on both the Internet and
using a simulator show that Vegas achieves 37-7 1 % better
throughput, with one-fifth to one-half as many bytes being
retransmitted, as compared to the implementation of TCP
in the Reno distribution of BSD Unix. We have also given
evidence that Vegas is just as fair as Reno, that it does not
suffer from stability problems, and that it does not adversely
affect latency.

APPENDIX
DETAILED GRAPH DESCRIPTION

To assist the reader in developing a better understanding of
the graphs used throughout this paper, and to gain a better
insight of Reno’s behavior, we describe in detail one of these
graphs. Fig. 13 is a trace of Reno when there is other traffic
through the bottleneck router. The numbers in parenthesis refer
to the type of line in the graph.

In general, output is allowed while the UNACK-COUNT
(4) (number of bytes sent but not acknowledged) is less than
the congestion window (3) and less than the send window (2).
The purpose of the congestion window is to prevent, or more
realistically in Reno’s case, to control congestion. The send
window is used for flow control, it prevents data from being
sent when there is no buffer space available at the receiver.

The threshold window (1) is set to the maximum value
(64 KB) at the beginning of the connection. Soon after the
connection is started, both sides exchange information on the
size of their receive buffers, and the send window (2) is set to
the minimum of the sender’s send buffer size and the receiver’s
advertised window size.

The congestion window (3) increases exponentially while it
is less than the threshold window (1). At 0.75 s, losses start to

occur (indicated by the tall vertical lines). More precisely, the
vertical lines represent segments that are later retransmitted
(usually because they were lost). At around 1 s, a loss is
detected after receiving 3 duplicate ACKs and Reno’s Fast
Retransmit and Fast Recovery mechanisms go into action.
The purpose of these mechanisms is to detect losses before
a retransmit timeout occurs, and to keep the pipe full (we
can think of a connection’s path as a water pipe, and our
goal is to keep it full of water) while recovering from these
losses.

The congestion window (3) is set to the maximal allowed
segment size (for this connection) and the UNACK-COUNT
is set to zero momentarily, allowing the lost segment to be
retransmitted. The threshold window (1) is set to half the value
that the congestion window had before the losses (it is assumed
that this is a safe level, that losses won’t occur at this window
size).

The congestion window (3) is also set to this value after
retransmitting the lost segment, but it increases with each
duplicate ACK (segments whose acknowledgment number is
the same as previous segments and carry no data or new
window information). Since the receiver sends a duplicate
ACK when it receives a segment that it cannot acknowledge
(because it has not received all previous data), the reception
of a duplicate ACK implies that a packet has left the pipe.

This implies that the congestion window (3) will reach the
UNACK-COUNT (4) when half the data in transit has been
received at the other end. From this point on, the reception of
any duplicate ACKs will allow a segment to be sent. This way
the pipe can be kept full at half the previous value (since losses
occurred at the previous value, it is assumed that the available
bandwidth is now only half its previous value). Earlier versions
of TCP would begin the slow-start mechanism when losses
were detected. This implied that the pipe would almost empty
and then fill up again. Reno’s mechanism allows it to stay
filled.

At around 1.2 s, a nonduplicate ACK is received, and the
congestion window (3) is set to the value of the threshold
window (1). The congestion window was temporarily inflated
when duplicate ACKs were received as a mechanism for
keeping the pipe full. When a nonduplicate ACK is received,
the congestion window is reset to half the value it had when
losses occurred.

Since the congestion window (3) is below the UNACK-
COUNT (4), no more data can be sent. At 2 s, a retransmit
timeout occurs (see black circle on top), and data starts to
flow again. The congestion window (3) increases exponentially
while it is below the threshold window (1). A little before 2.5
s, a segment is sent that will later be retransmitted. Skipping
to 3 s, we notice the congestion window (3) increasing linearly
because it is above the threshold window (1).

ACKNOWLEDGMENT

Thanks to S. W. O’Malley for his help and insightful
comments and to L. Berman from the National Library of
Medicine for providing a machine on the East Coast that we
could use in our experiments.

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

1480 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8. OCTOBER 1995

REFERENCES

[l] J.-S. Ahn, P. B. Danzig, Z . Liu, and L. Yan, “Experience with TCP
Vegas: Emulation and experiment,” in Proc. SIGCOMM ’95 Symp., Aug.
1995, to be published.

[2] L. S. Brakmo and L. L. Peterson, “Performance problems in BSD4.4
TCP,” ACM Computer Commun. Review, 1995, to be published.

[3] P. Danzig and S. Jamin, “tcplib: A library of TCP internetwork traffic
characteristics,” Computer Science Department, USC, Technical Report

[4] S. Floyd, “TCP and successive fast retransmits,’’ Lawrence Berkeley
Laboratory, Technical Report, 1994. Available from anonymous ftp from
ftp.ee. 1 bl.gov:papers/fastretrans.ps.

[5] A. Heybey, “The network simulator,” MIT, Technical Report, Sept.
1990.

[6] N. C. Hutchinson and L. L. Peterson, “The s-kernel: An architecture
for implementing network protocols,” IEEE Trans. Sofrware Enn., vol.

CS-SYS-91-495, 1991.

17, no. 1, pp. &76, Jan.’1991.
171 V. Jacobson, “Congestion avoidance and control,” in Proc. SIGCOMM . .

’88 Symp., Aug. 1988, pp. 314-329.
[8] V. Jacobson and R. Braden, “TCP extensions for long-delay paths,”

request for comments 1072, Oct. 1988.
[9] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high

performance,” request for comments 1323, May 1992.
[101 R. Jain, “A delay-based approach for congestion avoidance in intercon-

nected heterogeneous computer networks,” ACM Computer Commun.
Review, vol. 19, no. 5, pp. 56-71, Oct. 1989.

[111 __, The Art of Computer Systems Perf&-mance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Mod-
eling. New York Wiley, 1991.

1121 S. Keshav, “REAL: A network simulator,” Department of Computer
Science, UC Berkeley, Technical Report 88/472, 1988.

[I31 -, “A control-theoretic approach to flow control,” in Proc. SIG-
COMM ’91 Symp., Sept. 1991, pp. 3-15.

[14] D. C. S. S. R. Braden, “Integrated services in the internet architecture:
An overview,” request for comments 1633, Sept. 1994.

[15] W. R. Stevens, TCP/IP Illustrated, Volume I : The Protocols. New
York: Addison-Wesley, 1994.

[16] 2. Wang and J. Crowcroft, “A new congestion control scheme: Slow
start and search (Tri-S),” ACM Computer Commun. Review, vol. 21, no.
1, pp. 3 2 4 3 , Jan. 1991.

[I71 -, “Eliminating periodic packet losses in 4.3-Tahoe BSD TCP
congestion control algorithm,” ACM Computer Commun. Review, vol.
22, no. 2, pp. 9-16, Apr. 1992.

[18] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics
of a congestion control algorithm: The effects of two-way traffic,” in
Proc. SIGCOMM ’91 Symposium, Sept. 1991, pp. 133-147.

Lawrence S. Brakmo (S’95) received the B.S. and
M.S. degrees in mathematics and the M.S. degree in
computer science from the University of Arizona.

He is a Ph.D. candidate in the graduate program
of the Computer Science Department at the Uni-
versity of Arizona. His current research interests
include network congestion avoidance techniques,
network simulators, TCP Vegas, and protocols for
faster and more efficient transmission of files and
images.

Mr. Brakmo is a student member of the ACM.

Larry L. Peterson received the B.S. degree in
computer science from Kearney State College, and
the M.S. and Ph.D. degrees in computer science
from Purdue University.

He is a Professor of Computer Science at the Uni-
versity of Arizona, where he directs the Networking
Systems Research Group. He has been involved in
the design and implementation of the s-kernel and
Scout operating systems, as well as the design and
evaluation of several communication protocols.

Dr. Peterson is an Associate Editor of the ACM
Transactions on Computer Systems and the IEEEIACM TRANSACTIONS ON
NETWORKING, and he is a member of the Internet’s End-to-End research group.
He is a member of the ACM and an affiliate of the IEEE.

Authorized licensed use limited to: Stanford University. Downloaded on March 22,2024 at 21:42:29 UTC from IEEE Xplore. Restrictions apply.

